Теория системного строения. Понятия, характеризующие строение, функционирование и развитие систем

В самом общем и широком смысле слова под системным исследованием предметов и явлений окружающего нас мира понимают такой метод, при котором они рассматриваются как части или элементы единого, целостного образования. Эти части или элементы, взаимодействуя, определяют новые свойства системы, которые отсутствуют у отдельных ее элементов. С таким пониманием системы мы постоянно встречались в ходе изложения всего предыдущего материала. Однако оно применимо лишь для характеристики систем, состоящих из однородных частей, имеющих вполне определенную структуру. Тем не менее на практике нередко к системам относят также совокупности разнородных объектов, объединенных в одно целое для осуществления определенной цели.

Главное, что определяет систему, - это взаимосвязь и взаимодействие частей в рамках целого. Если такое взаимодействие существует, то допустимо говорить о системе, хотя степень взаимодействия ее частей может быть различной. Следует также обратить внимание на то, что каждый отдельный объект, предмет или явление можно рассматривать как определенную целостность, состоящую из частей, и, следовательно, исследовать как систему.

Понятие системы и системный метод в целом формировались постепенно, по мере того как наука и практика овладевали разными типами, видами и формами взаимодействия и объединения предметов и явлений. Теперь нам предстоит подробнее ознакомиться с различными попытками уточнения как самого понятия системы, так и становления системного метода.

18.1. Становление системного метода исследования

Корни системного подхода к изучению окружающего мира уходят в глубокую древность. В неявной форме он широко применялся в ан-


тичной науке, хотя сам термин «система» появился значительно позднее. Древние греки рассматривали природу и мир как нечто единое целое, в котором предметы, явления и события связаны множеством различных связей. Основой такого единства у ранних греческих философов выступает определенное материальное начало: вода у Фалеса, воздух у Анаксимена и огонь у Гераклита. Однако эта верная в общем идея не раскрывалась в конкретных связях явлений и процессов, не доказывалась в частностях. Это и вполне понятно, ибо у древних греков не было конкретных наук и все, что можно было назвать положительным знанием, наравне с натурфилософскими спекуляциями входило в состав нерасчлененной философии. Исключением являлась лишь математика, в которой они создали знаменитый аксиоматический метод построения знания, до сих пор служащий важнейшим средством логической систематизации и обоснования не только математического, но и любого знания вообще.

С переходом к опытному изучению природы и возникновением экспериментального естествознания в XVII в. происходит расчленение знаний по отдельным областям природы, группам явлений, отраслям и научным дисциплинам. Начинается дисциплинарный способ построения и развития научного знания, когда каждая наука тщательно и досконально изучает свой предмет, используя специфические методы исследования, не интересуясь при этом ни целями и задачами, ни способами познания других наук. Такой подход, как отмечалось уже в 1-й главе, обладал определенными преимуществами, но в то же время ограничивал возможности исследователей узкими рамками своей дисциплины и тем самым препятствовал установлению связей между другими дисциплинами. В результате этого единая природа оказалась искусственно поделенной между разобщенными науками.

Несмотря на это, дифференциация науки продолжала расти, число отдельных научных дисциплин все больше увеличивалось, и, соответственно, ослабевали связи и взаимопонимание ученых. Со временем такое положение становилось все более нетерпимым, и вопреки сопротивлению отдельных групп ученых возникали интегративные, междисциплинарные методы и теории, с помощью которых, используя общие понятия и принципы, решались проблемы, которые выдвигались перед науками, изучавшими взаимосвязанные процессы и формы движения материи, а потом и более общие теории. Так, еще в конце XIX - начале XX в. возникли биофизика и биохимия, геофизика и геохимия, химическая физика и физическая химия и другие.

Настоящий прорыв в системных исследованиях произошел после окончания Второй мировой войны, когда возникло мощное систем-


ное движение, способствовавшее внедрению идей, принципов и методов системного исследования не только в естествознание, но и в социально-экономические и гуманитарные науки. Именно системный подход способствовал тому, что каждая наука стала рассматривать в качестве своего предмета изучение систем определенного типа, которые находятся во взаимодействии с другими системами. Согласно новому подходу, мир предстал в виде огромного множества систем самого разнообразного конкретного содержания и общности, объединенных в единое целое - Вселенную.

18.2. Специфика системного метода исследования

Приведенное выше интуитивное определение системы достаточно для того, чтобы отличать системы от таких совокупностей предметов и явлений, которые системами не являются. В нашей литературе для них не существует специального термина. Поэтому мы будем обозначать их заимствованным из англоязычной литературы термином агрегаты. Кучу камней вряд ли кто-либо назовет системой, в то время как физическое тело, состоящее из большого числа взаимодействующих молекул, или химическое соединение, образованное из нескольких элементов, а тем более живой организм, популяцию, вид и другие сообщества живых существ всякий будет интуитивно считать системой.

Чем мы руководствуемся при отнесении одних совокупностей объектов к системам, а других - к агрегатам? Очевидно, что в первом случае мы замечаем определенную целостность, единство составляющих систему элементов, а во втором такое единство и взаимосвязь отсутствуют и поэтому речь должна идти о простой совокупности, или агрегате, элементов.

Таким образом, для системного подхода характерно именно целостное рассмотрение, установление взаимодействия составных частей или элементов совокупности, несводимость свойств целого к свойствам частей.

На протяжении всего изложения мы встречались с многочисленными физическими, химическими, биологическими и экологическими системами, свойства которых нельзя объяснить свойствами их элементов. В отличие от этого свойства простых совокупностей, или агрегатов, возникают из суммирования свойств составляющих их частей. Так, например, длина тела, состоящего из нескольких частей, или его вес могут быть найдены путем суммирования соответственно длин и весов его частей. В отличие от этого температуру воды, полученную путем смешения разных ее объемов, нагретых до разных гра-


дусов, нельзя вычислить таким способом. Нередко поэтому говорят, что если свойства простых совокупностей аддитивны, т.е. суммируются или складываются из свойств или величин их частей, то свойства систем как целостных образований неаддитивны.

Следует, однако, отметить, что различие между системами и агрегатами, или просто совокупностями объектов, имеет не абсолютный, а относительный характер и зависит от того, как подходят к исследованию совокупности. Ведь даже кучу камней можно рассматривать как некоторую систему, элементы которой взаимодействуют по закону всемирного тяготения. Тем не менее здесь мы не обнаруживаем возникновения новых целостных свойств, которые присущи настоящим системам. Этот отличительный признак систем, заключающийся в наличии у них новых интегративных, целостных свойств, которые возникают вследствие взаимодействия составляющих их частей или элементов, всегда следует иметь в виду при определении систем.

В последние годы предпринималось немало попыток дать логическое определение понятию системы. Поскольку в логике типичным способом является определение через ближайший род и видовое отличие, постольку в качестве родового понятия обычно выбирались наиболее общие понятия математики и даже философии. В современной математике таким понятием считается понятие множества, введенное в конце прошлого века немецким математиком Г. Кантором (1845-1918) для обозначения любой совокупности математических объектов, обладающих некоторым общим свойством. Поэтому Р. Фейджин и А. Холл воспользовались понятием множества для логического определения системы.

«Система, - пишут они, - это множество объектов вместе с отношениями между объектами и между их атрибутами (свойствами)».

Такое определение нельзя назвать корректным, хотя бы потому, что самые различные совокупности объектов можно назвать множествами и для многих из них можно установить определенные отношения между объектами, так что видовое отличие для систем (differentia specified) не указано. Дело, однако, не столько в формальной некорректности определения, сколько в его содержательном несоответствии действительности. В самом деле, в нем не отмечается, что объекты, составляющие систему, взаимодействуют таким образом, что они обусловливают возникновение новых, целостных, системных свойств. По-видимому, такое предельно широкое понятие, как система, нельзя определить чисто логически через другие существующие понятия. Поэтому его следует признать исходным и неопределяемым понятием, содержание которого можно объяснить с помощью приме-


ров. Именно так обычно поступают в науке, когда приходится иметь дело с исходными, первоначальными ее понятиями, например с множеством в математике или массой и зарядом в физике.

Для лучшего понимания природы систем необходимо рассмотреть сначала их строение и структуру, а затем и классификацию.

Строение системы характеризуется теми компонентами, из которых она образована. Такими компонентами являются: подсистемы, части или элементы системы, в зависимости от того, что принимается за основу деления.

Подсистемы составляют части системы, которые обладают определенной автономностью, но в то же время они подчинены системе и управляются ею. Обычно подсистемы выделяются в особым образом организованных системах, которые называются иерархическими.

Элементами обычно называют наименьшие единицы системы, хотя в принципе любую часть можно рассматривать в качестве элемента, если отвлечься от ее размера.

В качестве типичного примера можно привести человеческий организм, который состоит из нервной, дыхательной, пищеварительной и других подсистем, часто называемых просто системами. В свою очередь, подсистемы содержат в своем составе определенные органы, которые состоят из тканей, а ткани - из клеток, а клетки - из молекул. Многие живые и социальные системы построены по такому же иерархическому принципу, где каждый уровень организации, обладая известной автономностью, в то же время подчинен предшествующему, более высокому уровню. Такая тесная взаимосвязь и взаимодействие различных компонентов обеспечивают системе как целостному, единому образованию наилучшие условия для существования и развития.

Структурой системы называют совокупность тех специфических взаимосвязей и взаимодействий, благодаря которым возникают новые целостные свойства, присущие только системе и отсутствующие у отдельных ее компонентов. В западной литературе такие свойства называют эмерджентными, или возникающими в результате взаимодействия и присущими только системе. В зависимости от конкретного характера взаимодействия компонентов различают различные типы систем: электромагнитные, атомные, ядерные, химические, биологические и социальные. В рамках этих типов можно, в свою очередь, рассматривать отдельные виды систем.

В принципе к каждому отдельному объекту можно подойти с системной точки зрения, поскольку он представляет собой определенное целостное образование, способное к самостоятельному существованию. Так, например, молекула воды, образованная из двух атомов во-


дорода и одного атома кислорода, представляет собой систему, компоненты которой взаимосвязаны силами электромагнитного взаимодействия. Весь окружающий нас мир, его предметы, явления и процессы оказываются совокупностью самых разнообразных по конкретной природе и уровню организации систем. Каждая система в этом мире взаимодействует с другими системами.

Система и ее окружение. Для более тщательного исследования обычно выделяют те системы, с которыми данная система взаимодействует непосредственно и которые называют окружением или внешней средой системы. Все реальные системы в природе и обществе являются, как уже указывалось, открытыми и, следовательно, взаимодействующими с окружением путем обмена веществом, энергией и информацией. Представление о закрытой, или изолированной, системе является далеко идущей абстракцией, не отражающей адекватно реальность, поскольку никакая реальная система не может быть изолирована от воздействия других систем, составляющих ее окружение. В неорганической природе открытые системы могут обмениваться с окружением либо веществом, как это происходит в химических реакциях, либо энергией, когда система получает свежую энергию из окружения и рассеивает в нем «отработанную» энергию в виде тепла. В живой природе системы обмениваются с окружением, кроме вещества и энергии, также и информацией, посредством которой происходит управление и передача наследственных признаков от организмов к потомкам. Особое значение обмен информацией приобретает в социально-экономических и культурно-гуманитарных системах, где такой обмен служит основой для всей коммуникативной деятельности людей.

Классификация систем может производиться по самым разным основаниям. Прежде всего, все системы можно разделить на системы материальные и идеальные, или концептуальные. К материальным системам относится подавляющее большинство систем неорганического, органического и социального характера. Все материальные системы, в свою очередь, могут быть разделены на основные классы соответственно той форме движения материи, которую они представляют. В связи с этим обычно различают гравитационные, физические, химические, биологические, геологические, экологические и социальные системы. Среди материальных систем выделяют также искусственные, специально созданные обществом технические и технологические системы, служащие для производства материальных благ.

Все эти системы называются материальными или объективными потому, что их содержание и свойства не зависят от познающего субъекта. Однако субъект может все глубже, полнее и точнее познавать их


свойства и закономерности с помощью создаваемых им концептуальных систем. Такие системы называются идеальными именно потому, что представляют собой отражение материальных, объективно существующих в природе и обществе систем.

Наиболее типичным примером концептуальной системы является научная теория, которая выражает с помощью своих понятий, обобщений и законов объективные, реальные связи и отношения, существующие в конкретных природных и социальных системах.

Системный характер научной теории выражается в самом ее построении, когда отдельные ее понятия и суждения не просто перечисляются, а объединяются в рамках определенной целостной структуры. В этих целях обычно выделяются несколько основных, или первоначальных, понятий, на основе которых, во-первых, по правилам логики определяются другие, производные, или вторичные, понятия. Аналогично этому среди всех суждений теории выбираются некоторые исходные, или основные, суждения, которые в математических теориях называются аксиомами, а в естественнонаучных теориях - законами или принципами. Так, например, в классической механике такими основными суждениями являются три основных закона механики, в специальной теории относительности - принципы постоянства скорости света и относительности. В математизированных теориях физики соответствующие законы часто выражаются с помощью систем уравнений, как это осуществлено Дж.К. Максвеллом в его теории электромагнетизма. В биологических и социальных теориях обычно ограничиваются словесными формулировками законов. На примере эволюционной теории Ч. Дарвина мы видели, что ее основное содержание можно выразить с помощью трех основных принципов или даже единственного принципа естественного отбора.

Все наше знание не только в области науки, но и в других сферах деятельности мы стремимся определенным образом систематизировать, чтобы стала ясной логическая взаимосвязь отдельных суждений, а также всей структуры знания в целом. Отдельное, изолированное суждение не представляет особого интереса для науки. Только тогда, когда его удается логически связать с другими элементами знания, в частности с суждениями теории, оно приобретает определенный смысл и значение. Поэтому важнейшая функция научного познания состоит как раз в систематизации всего накопленного знания, при которой отдельные суждения, выражающие знание о конкретных фактах, объединяются в рамках определенной концептуальной системы.

Другие классификации в качестве основания деления рассматривают признаки, характеризующие состояние системы, ее поведение,


взаимодействие с окружением, целенаправленность и предсказуемость поведения и другие свойства.

Наиболее простой классификацией является деление систем на статические и динамические, которое в известной мере является условным, так как все в мире находится в постоянном изменении и движении. Поскольку, однако, даже в механике мы различаем статику и динамику, то кажется целесообразным рассматривать специально также статические системы.

Среди динамических систем обычно выделяют детерминистические и стохастические системы. Такая классификация основывается на характере предсказания динамики или поведения систем. Как отмечалось в предыдущих главах, предсказания, основанные на изучении поведения детерминистических систем, имеют вполне однозначный и достоверный характер. Именно такими системами являются динамические системы, исследуемые в классической механике и астрономии. В отличие от них стохастические системы, которые чаще всего называют вероятностно-статистическими, имеют дело с массовыми или повторяющимися случайными событиями и явлениями. Поэтому предсказания в них, как отмечалось в предыдущих главах, имеют не достоверный, а лишь вероятностный характер.

По характеру взаимодействия с окружающей средой различают, как мы уже знаем, системы открытые и закрытые (изолированные), а иногда выделяют также частично открытые системы. Такая классификация носит в основном условный характер, ибо представление о закрытых системах возникло в классической термодинамике как определенная абстракция, оказавшаяся не соответствующей объективной действительности, в которой подавляющее большинство систем, если не все они, являются открытыми.

Многие сложноорганизованные системы, встречающиеся в социальном мире, являются целенаправленными, т.е. ориентированными на достижение одной или нескольких целей, причем в разных подсистемах и на разных уровнях организации эти цели могут быть отличными и даже прийти в конфликт между собой.

Классификация систем дает возможность рассмотреть множество существующих в науке систем ретроспективно, т.е. задним числом, и поэтому не представляет для исследователя такого интереса, как изучение метода и перспектив системного подхода в конкретных условиях его применения.


18.3. Метод и перспективы системного исследования

В неявной форме системный подход в простейшем виде применялся в науке с самого начала ее возникновения. Даже тогда, когда отдельные науки занимались накоплением и обобщением первоначального фактического материала, идея систематизации и единства лежала в основе всех поисков новых фактов и приведения их в единую систему научного знания.

Однако возникновение системного метода как особого способа исследования многие относят ко времени Второй мировой войны и наступившему мирному периоду. Во время войны ученые столкнулись с проблемами комплексного характера, которые требуют учета взаимосвязи и взаимодействия многих факторов в рамках целого. К таким проблемам относились, в частности, планирование и проведение военных операций, вопросы снабжения и организации армии, принятие решений в сложных условиях и т.п. На этой основе возникла одна из первых системных дисциплин, названная исследованием операций. Применение системных идей к анализу экономических и социальных процессов способствовало возникновению теории игр и теории принятия решений.

Пожалуй, самым значительным шагом в формировании идей системного метода было появление кибернетики как общей теории управления в технических системах, живых организмах и обществе. В ней наиболее отчетливо виден новый подход к исследованию различных по конкретному содержанию систем управления. Хотя отдельные теории управления существовали и в технике, и в биологии, и в социальных науках, тем не менее единый, междисциплинарный подход дал возможность раскрыть более глубокие и общие закономерности управления, которые заслонялись массой второстепенных деталей при конкретном исследовании частных систем управления. В рамках кибернетики впервые было ясно показано, что процесс управления с самой общей точки зрения можно рассматривать как процесс накопления, передачи и преобразования информации. Само же управление можно отобразить с помощью определенной последовательности алгоритмов, или точных предписаний, посредством которых осуществляется достижение поставленной цели. Вскоре после этого алгоритмы были использованы для решения различных других задач массового характера, например управления транспортными потоками, технологическими процессами в металлургии и машиностроении, организации распределения продукции, регулирования движения и многочисленных подобных процессов.

Появление быстродействующих компьютеров явилось той необходимой технической базой, с помощью которой можно было обраба-


тывать разнообразные алгоритмически описанные процессы. Алгоритмизация и компьютеризация целого ряда производственно-технических, управленческих и других процессов явилась, как известно, одним из составных элементов современной научно-технической революции, связавшей воедино новые достижения науки с результатами развития техники.

Чтобы лучше понять сущность системного метода, необходимо с самого начала отметить, что понятия, теории и модели, на которые он опирается, применимы для исследования предметов и явлений самого конкретного различного содержания. В этих целях приходится абстрагироваться, отвлекаться от конкретного содержания отдельных, частных систем и выявить то общее, существенное, что присуще всем системам определенного рода.

Наиболее общим приемом для реализации этой цели служит математическое моделирование. С помощью математической модели отображаются наиболее существенные количественные и структурные связи между элементами некоторых родственных систем. Затем эта модель рассчитывается на компьютере и результаты вычислений сравниваются с данными наблюдений и экспериментов. Возникающие расхождения устраняются путем внесения дополнений и изменений в первоначальную модель.

Обращение к математическим моделям диктуется самим характером системных исследований, в процессе которых приходится иметь дело с наиболее общими свойствами и отношениями разнообразных конкретных, частных систем. В отличие от традиционного подхода, оперирующего двумя или несколькими переменными, системный метод предполагает анализ целого множества переменных. Связь между этими многочисленными переменными, выраженными на языке различных уравнений и их систем, и представляет собой математическую модель. Эта модель вначале выдвигается в качестве некоторой гипотезы, которая в дальнейшем должна быть проверена с помощью опыта.

Очевидно, что, прежде чем построить математическую модель какой-либо системы, необходимо выявить то общее, качественно однородное, что присуще разным видам однотипных систем. До тех пор, пока системы не будут изучены на качественном уровне, ни о какой количественной математической модели не может быть речи. Ведь для того, чтобы выразить любые зависимости в математической форме, необходимо найти у разных конкретных систем предметов и явлений однородные свойства, например размеры, объем, вес и т.п. С помощью выбранной единицы измерения эти свойства можно представить в виде чисел и затем выразить отношения между свойствами как зависи-


мости между отображающими их математическими уравнениями и функциями. Построение математической модели имеет существенное преимущество перед простым описанием систем в качественных терминах потому, что оно дает возможность делать точные прогнозы о поведении систем, которые гораздо легче проверить, чем весьма неопределенные и общие качественные предсказания. Таким образом, при математическом моделировании систем наиболее ярко проявляется эффективность единства качественных и количественных методов исследования, характеризующая магистральный путь развития современного научного познания.

Обратимся теперь к вопросу о преимуществах и перспективах системного метода исследования.

Прежде всего заметим, что возникновение самого системного метода и его применение в естествознании и других науках знаменуют значительно возросшую зрелость современного этапа их развития. Прежде чем наука могла перейти к этому этапу, она должна была исследовать отдельные стороны, особенности, свойства и отношения тех или иных предметов и явлений, изучать части в отвлечении от целого, простое отдельно от сложного. Такому периоду, как отмечалось в 1-й главе, соответствовал дисциплинарный подход, когда каждая наука сосредоточивала все внимание на исследовании специфических закономерностей изучаемого ею круга явлений. Со временем стало очевидным, что такой подход не дает возможности раскрыть более глубокие закономерности, присущие широкому классу взаимосвязанных явлений, не говоря уже о том, что он оставляет в тени взаимосвязь разных классов явлений, каждый из которых был предметом обособленного изучения отдельной науки.

Междисциплинарный подход, сменивший дисциплинарный, стал все шире применяться для установления закономерностей, присущих разным областям явлений, и получил дальнейшее развитие в различных формах системных исследований как в процессе своего становления, так и в конкретных приложениях.

Системный метод прошел разные этапы, что отразилось на самой терминологии, которая, к сожалению, не отличается единством. С точки зрения практической значимости можно выделить:

системотехнику, занимающуюся исследованием, проектированием и конструированием новейших технических систем, в которых учитывается не только работа механизмов, но и действия человека - оператора, управляющего ими. Это направление разрабатывает некоторые принципы организации и самоорганизации, выявленные кибернетикой, и в настоящее время приобретает все большее значение в


связи с внедрением человеко-машинных систем, в том числе и компьютеров, работающих в режиме диалога с исследователем;

системный анализ, который занимается изучением комплексных и многоуровневых систем. Хотя такие системы обычно состоят из элементов разнородной природы, но они определенным образом связаны и взаимодействуют друг с другом и поэтому требуют целостного, системного анализа. К ним относятся, например, система организации современной фабрики или завода, в которых в единое целое объединены производство, снабжение сырьем, сбыт товаров и инфраструктура;

теорию систем, которая изучает специфические свойства систем, состоящих из объектов единой природы, например физические, химические, биологические и социальные системы.

Если системотехника и системный анализ фактически являются приложениями некоторых системных идей в области организации производства, транспорта, технологии и других отраслей народного хозяйства, то теория систем исследует общие свойства систем, изучаемых в естественных, технических, социально-экономических и гуманитарных науках.

Может возникнуть вопрос: если конкретные свойства упомянутых выше систем изучаются в отдельных науках, то зачем нужен особый системный метод? Чтобы правильно ответить на него, необходимо ясно указать, что именно изучают конкретные науки и теория систем, когда применяются к одной и той же области явлений. Если для физика, биолога или социолога важно раскрыть конкретные, специфические связи и закономерности изучаемых систем, то задача теоретика систем состоит в том, чтобы выявить наиболее общие свойства и отношения таких систем, показать, как проявляются в них общие принципы системного метода. Иначе говоря, при системном подходе каждая конкретная система выступает как частный случай общей теории систем.

Говоря об общей теории систем, следует отдавать себе ясный отчет о характере ее общности. Дело в том, что в последние годы выдвигается немало проектов построения таких общих теорий, принципы и утверждения которых претендуют на универсальность. Один из инициаторов создания подобной теории Л. фон Берталанфи, внесший значительный вклад в распространение системных идей, формулирует ее задачи следующим образом: «Предмет этой теории составляет установление и вывод тех принципов, которые справедливы для «систем» в целом... Мы можем задаться вопросом о принципах, применимых к системам вообще, независимо от их физической, биологической или социальной природы. Если мы поставим такую задачу и подходящим образом определим понятие системы, то обнаружим, что существуют модели, прин-


ципы и законы, которые применимы к обобщенным системам независимо от их частного вида, элементов или «сил», их составляющих».

Спрашивается, какой характер должна иметь такая, не просто общая, а, по сути дела, универсальная теория систем? Очевидно, чтобы стать применимой везде и всюду, такая теория должна абстрагироваться от любых конкретных, частных и особенных свойств отдельных систем. Но в таком случае из ее понятий и принципов нельзя логически вывести конкретные свойства отдельных систем, как на этом настаивают сторонники общей, или, можно сказать, универсальной, теории. Другое дело, что некоторые общие системные понятия и принципы могут быть использованы для лучшего понимания и объяснения конкретных систем.

Фундаментальная роль системного метода заключается в том, что с его помощью достигается наиболее полное выражение единства научного знания. Это единство проявляется, с одной стороны, во взаимосвязи различных научных дисциплин, которая выражается в возникновении новых дисциплин на «стыке» старых (физическая химия, химическая физика, биофизика, биохимия, биогеохимия и др.), в появлении междисциплинарных направлений исследования (кибернетика, синергетика, экологические программы и т.п.). С другой стороны, системный подход дает возможность выявить единство и взаимосвязь в рамках отдельных научных дисциплин. Как уже отмечалось выше, свойства и закономерности реальных систем в природе находят свое отображение прежде всего в научных теориях отдельных дисциплин естествознания. Эти теории, в свою очередь, связываются друг с другом в рамках соответствующих дисциплин, а последние как раз и составляют естествознание как учение о природе в целом. Итак, единство, которое выявляется при системном подходе к науке, заключается прежде всего в установлении связей и отношений между самыми различными по сложности организации, уровню познания и целостности охвата концептуальными системами, с помощью которых как раз и отображается рост и развитие нашего знания о природе. Чем обширнее рассматриваемая система, чем сложнее она по уровню познания, иерархической организации, тем больший круг явлений она в состоянии объяснить. Таким образом, единство знания находится в прямой зависимости от его системности.

С позиций системности, единства и целостности научного знания становится возможным правильно подойти к решению таких проблем, как редукция, или сведение одних теорий естествознания к другим, синтез, или объединение, кажущихся далекими друг от друга теорий, их подтверждение и опровержение данными наблюдений и экспериментов.


Редукция, или сведение одних теорий к другим, представляет вполне допустимую теоретическую процедуру, ибо выражает тенденцию к установлению единства научного знания. Когда Ньютон создал свою механику и теорию гравитации, то тем самым он продемонстрировал единство законов движения земных и небесных тел. Аналогично этому использование спектрального анализа для установления единства химических элементов в структуре небесных тел было крупным достижением в физике. В наше время редукция некоторых свойств и закономерностей биологических систем к физико-химическим свойствам явилась основой эпохальных открытий в области изучения наследственности, синтеза белковых тел и эволюции.

Однако редукция оказывается приемлемой и эффективной только тогда, когда она используется для объяснения однотипных по содержанию явлений и систем. Действительно, когда Ньютону удалось свести законы движения небесной механики к законам земной механики и установить единство между ними, то это оказалось возможным только потому, что они описывают однотипные процессы механического движения тел. Чем больше одни процессы отличаются от других, чем они качественно разнороднее, тем труднее поддаются редукции. Поэтому закономерности более сложных систем и форм движения нельзя полностью свести к законам низших форм или более простых систем. Обсуждая концепцию атомизма, мы убедились, что, несмотря на огромные успехи в объяснении свойств сложных веществ посредством простых свойств составляющих их атомов, эта концепция имеет определенные границы. Ведь общие, целостные свойства систем не сводятся к сумме свойств их компонентов, а возникают в результате их взаимодействия. Такой новый, системный подход в корне подрывает представления о прежней естественнонаучной картине мира, когда природа рассматривалась как простая совокупность различных процессов и явлений, а не тесно взаимосвязанных и взаимодействующих систем, различных как по уровню организации, так и по их сложности.

18.4. Системный метод и современное научное мировоззрение

Широкое распространение идей и принципов системного метода способствовало выдвижению ряда новых проблем мировоззренческого характера. Более того, некоторые западные лидеры системного подхода стали рассматривать его в качестве новой научной философии, которая в отличие от господствовавшей раньше философии позитивизма, подчеркивавшей приоритет анализа и редукции, главный упор делает на


синтез и антиредукционизм. В связи с этим особую актуальность приобретает старая философская проблема о соотношении части и целого.

Многие сторонники механицизма и физикализма утверждают, что определяющую роль в этом соотношении играют части, поскольку именно из них возникает целое. Но при этом они игнорируют тот непреложный факт, что в рамках целого части не только взаимодействуют друг с другом, но и испытывают действие со стороны целого. Попытка понять целое путем анализа частей оказывается несостоятельной именно потому, что она игнорирует синтез, который играет решающую роль в возникновении каждой системы. Любое сложное вещество или химическое соединение по своим свойствам отличается от свойств составляющих его простых веществ или элементов. Каждый атом обладает свойствами, отличными от свойств образующих его элементарных частиц. Короче, всякая система характеризуется особыми целостными, интегральными свойствами, отсутствующими у ее компонентов.

Противоположный подход, опирающийся на приоритет целого над частью, не получил в науке широкого распространения потому, что он не может рационально объяснить процесс возникновения целого. Нередко поэтому его сторонники прибегали к допущению иррациональных сил, вроде энтелехии, жизненной силы и т.п. В философии подобные взгляды защищают сторонники холизма (от греч. - целый), которые считают, что целое всегда предшествует частям и всегда важнее частей. В применении к социальным системам такие принципы обосновывают подавление личности обществом, игнорирование ее стремления к свободе и самостоятельности.

На первый взгляд может показаться, что концепция холизма о приоритете целого над частью согласуется с принципами системного метода, который также подчеркивает большое значение идей целостности, интеграции и единства в познании явлений и процессов природы и общества. Но при более внимательном знакомстве оказывается, что холизм чрезмерно преувеличивает роль целого в сравнении с частью, значение синтеза по отношению к анализу. Поэтому он является такой же односторонней концепцией, как атомизм и редукционизм.

Системный подход избегает этих крайностей в познании мира. Он исходит из того, что система как целое возникает не каким-то мистическим и иррациональным путем, а в результате конкретного, специфического взаимодействия вполне определенных реальных частей. Именно вследствие такого взаимодействия частей и образуются новые интегральные свойства системы. Но вновь возникшая целостность, в свою очередь, начинает оказывать воздействие на части, подчиняя их функционирование задачам и целям единой, целостной


системы. Мы отмечали, что не всякая совокупность или целое образует систему, и в связи с этим ввели понятие агрегата. Но всякая система есть целое, образованное взаимосвязанными и взаимодействующими его частями. Таким образом, процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом, анализ будет сопровождаться синтезом.

Основные понятия и вопросы

Агрегат Множество

Аддитивность Подсистема

Внешняя среда Система

Детерминизм Системный анализ

Иерархия Системотехника

Информация Стохастика

Математическое моделирование Структура

1. В чем состоит специфика системного исследования?

2. Чем отличается система от агрегата?

3. Какое различие существует между строением и структурой системы?

4. На чем основано применение математики в системных исследованиях?

5. В чем состоят преимущества системного метода исследования?

6. Можно ли применить системный метод к отдельному предмету?

7. Чем отличается системотехника от системного анализа?

8. Можно ли построить универсальную теорию систем?

9. Чем отличается системный подход от редукционизма и холизма?
10. Какое мировоззренческое значение имеет системный метод?

Литература

Основная:

Блауберг И.В., Юдин Э.Г. Становление и сущность системного подхода. М., 1973.

Рузавин Г. И. Системный подход и единство научного знания // Единство научного знания. М., 1988. С. 237-252.

Философия науки. Современные философские проблемы областей научного знания. М., 2005.

Дополнительная:

Системные исследования. Методологические проблемы: Ежегодник. М., 1982.

Философия: энциклопедический словарь / Под ред. А.А. Ивина. М., 2004.

ТЕМА 1. лекция 1. Введение в дисциплину

Введение

Введение

В современном мире специалисты в различных областях знаний постоянно сталкиваются с необходимостью решать сложные проблемы, порожденные сложностью самого окружающего мира, как естественного (природа), так и искусственного (техносфера). Для того, чтобы успешно с этой задачей справиться, недостаточно рассмотрения каких-то отдельных элементов, отдельных, частных вопросов. Необходимо рассматривать их, как мы говорим, в системе, с учетом множества взаимосвязей, множества специфических свойств. Для решения подобных задач, например, в области экологии (исследование устойчивости популяций животных, распространение загрязнений и т.п.), проектирования техники и т.п. было создано множество подходов, методов, приемов, которые в процессе своего развития и обобщения оформились в определенную технологию преодоления количественных и качественных сложностей.

Поскольку большие и сложные системы стали предметом изучения, управления и проектирования, потребовалось обобщение методов исследования таких систем и методов воздействия на них. Следовательно, появилась потребность в некоей прикладной науке, которая бы объединила теорию и технологию (практику) решения системных задач. Такие дисциплины возникали в разных областях практической деятельности, например:

 в инженерной деятельности: методы проектирования, инженерное творчество, системотехника;

 в экономике: исследование операций;

 в административном

 и политическом управлении: системный подход, футурология, политология;

 в прикладных научных исследованиях: «имитационное моделирование, методология эксперимента».

В конечном итоге развития этих дисциплин вызвало к жизни науку, которая получила название «системный анализ». Эта дисциплина для решения своих задач (ликвидации проблемы или выяснения ее причин) использует возможности различных наук и сфер деятельности. Она подразумевает использование математики, вычислительной техники, экспериментов (натурных и численных), моделирования.

На последнем слове следует остановиться. Наш курс называется «Системный анализ и моделирование процессов в техносфере». Таким образом, мы будем знакомиться с системным анализом не как с абстрактной дисциплиной, а в увязке с тем кругом проблем, которые вам, как специалистам, возможно, предстоит решать в вашей будущей деятельности. е. с разработкой математических моделей тех или иных явлений, происходящих в окружающей среде, в техносфере, или с проектированием систем обеспечения безопасности жизнедеятельности.

1. Системные представления в практической деятельности человека

Системность – это не какое-то придуманное учеными качество. Системен окружающий нас мир. Системно само человеческое мышление. Однако есть разные уровни системности. Применительно к человеческому знанию, человеческой деятельности это особенно заметно. Что такое появление проблемы? Это сигнал о недостаточной системности существующей деятельности. Что такое решение возникшей проблемы? Это успешный переход на новый, более высокий уровень системности. Утверждая это, в  1, авторы подчеркивают, что системность – это не столько состояние, сколько процесс.

Системно ли наше знание, наши представления? Возьмем то же слово «система» или «системность». Все вы, вероятно, смутно, интуитивно понимаете, что это такое, но попытка выразить словами эти понятия покажет, что это не так просто. То есть ваши представления системны, но уровень системности невысок, вы будете его повышать постепенно, в процессе изучения предмета.

Иерархия – структура с наличием подчиненности, т.е. неравнозначных связей между элементами, когда воздействия в одном из направлений оказывают гораздо большее влияние на элемент, чем в другом.

Мы легко употребляем в нашей речи слово «система» («солнечная», «нервная», «экологическая», «система мероприятий», «система уравнений», «система взглядов и т.п.). Самые очевидные и обязательные признаки систем мы можем отметить уже сейчас, а именно определенный состав, структурированность системы, взаимосвязанность составляющих ее частей, иерархичность, подчиненность организации всей системы определенный цели.

Это легко иллюстрируется на «биологическом» материале. Примером может служить организм животного человека. Действительно, организм – это система. Эта система представляет не простую совокупность составляющих ее элементов, подсистем (клеток, органов и т.д.), но совокупность взаимосвязанную, целью же ее служит поддержание гомеостаза – постоянства внутренней среды организма для обеспечения его жизнедеятельности.

В мире косной материи легко просматриваются все перечисленные признаки системы, за исключением, пожалуй, подчиненности определенной цели. Например, солнечная система – это не просто девять планет, обращающихся вокруг Солнца; их движения по орбитам взаимосвязаны, взаимозависимы: исчезновение одной из них, или изменение ее орбиты под действием какого-либо гипотетического внешнего воздействия повлияло бы на орбиты остальных составляющих системы, т.е. система в какой-то степени изменила бы свою внутреннюю структуру, оставаясь тем не менее, системой, единым целым. (Возможно, в каком-то смысле мы можем говорить здесь и о цели – сохранения устойчивости, постоянства ).

Естествознание не задастся вопросом о цели существования физического мира. Это область телеологии. Однако, известен так называемый антропный принцип. В своем «слабом» варианте он гласит, что мир устроен таким образом, и значения физических констант таковы, чтобы во Вселенной могла существовать жизнь. В своем «сильном» варианте он сводится к тому, что устройство мира и значения физических констант приспособлены к условиям наблюдателя , цель Вселенной - возникновение и развития человечества.

Кроме того, современные воззрения на процесс самоорганизации материи («синергетика» - рассмотрим далее) предполагает стремление неустойчивых неравновесных состояний систем к некоторым «точкам» - аттракторам, которые в некотором смысле мы может рассматривать как аналоги цели.

Системность человеческой деятельности . Если мы будет рассматривать практическую деятельность человека, то все перечисленные признаки систем здесь в самом деле очевидны. Действительно:

1) Всякое наше осознанное (неосознанные действия пока оставим в стороне) действие преследует определенную цель.

2) Во всяком действии легко увидеть его составные части, т.е. более мелкие действия.

3) При этом легко убедиться, что эти действия (составные части) должны выполняться не в произвольном порядке, а в определенной последовательности. Это и есть определенная, подчиненная цели взаимосвязанность составных частей, которая и является признаком системности.

Системность человеческой деятельности может быть также выражена через другое понятие – алгоритмичность. В последнее время понятие алгоритма из математики было перенесено на другие виды человеческой деятельности. Говорят об алгоритмах принятия управленческих решений, алгоритмах обучения, игры, алгоритмах изобретательства (г.Альтшуллер), алгоритмах творчества (Ю.Мурашковский, Kien fluas la rojo Kastalie?», Р. Зарипов «Машинный поиск вариантов при моделировании творческого процесса»). Здесь мы допускаем, что в алгоритме данной деятельности могут присутствовать и неформализованные действия, т.е. те, которые выполняются неосознанно.

Роль системных представлений в человеческой практике постоянно увеличивается, а с другой стороны растет сама системность человеческой практики.

Системность познания. Окружающий нас мир бесконечен. Человек же существует конечное время и располагает конечными материальными, энергетическими, информационными ресурсами. Но тем не менее человек получает мир и, идя долгой, извилистой тропой, совершая многочисленные ошибки, все же познает его верно, свидетельством чему является его практическая деятельность. А. Эйнштейн говорил, что самое удивительное в природе то, что она познаваема.

Следовательно, человеческое познание имеет какие-то особенности, которые позволяют разрешать противоречие между неограниченностью желаний человека познать мир и ограниченностью его возможностей сделать это, между бесконечностью природы и конечностью ресурсов человечества.

Такой особенностью является, прежде всего, наличие аналитического и синтетического образов мышления, т.е. способности к анализу и синтезу.

Анализ – это разделение целого на части, представление сложного в виде совокупности более простых компонент.

Чтобы понять целое, сложное, нужен и обратный процесс – синтез.

Синтез – метод исследования, состоящий в познании изучаемого предмета, явления как единого целью, в единстве и взаимосвязи его частей.

Аналитичность человеческого познания находит выражение, в частности, в выделении из единой натурфилософии различных наук. Процесс дифференциации наук, глубокое изучение все более узких вопросов идет и поныне.

Вместе с тем возникают так называемые «пограничные» науки, образующиеся как бы на стыке различных дисциплин, как, например, биохимия, биофизика.

Это уже процесс «синтеза» знаний. Другая, более высокая форма синтетических знаний реализуется в виде наук о самых общих свойствах природы (философия, математика). Такие науки как кибернетика, теория систем, теория организации, теория управления, инженерная психология, синтетичны по своей сути. В них соединяются естественные, технические и гуманитарные знания.

Осознание диалектического единства анализа и синтеза наступило не сразу, и в разные исторические эпохи системность мышления имела различный характер. Так, в истории познания человеком природы выделяют 4 стадии:

1-я – синкретическая – стадия нерасчлененного, недетализированного знания.

«…природа еще рассматривается в общем, как одно целое. Всеобщая связь явлений не доказывается в подробности: она является для греков результатом непосредственного созерцания» (Ф. Энгельс). На этой стадии формировалась так называемая натурфилософия – вместилище идей и догадок, ставших к XIII – XY столетиям зачатками естественных наук.

2-я – аналитическая (с XY – XVI вв) – мысленное расчленение и выделение частностей, приведшие к возникновению физики, химии и биологии и др. естественных наук. Для этой стадии характерен метафизический способ мышления.

3-я – синтетическая – воссоздание целостной картины Природы на основе ранее познанных частностей.

4-я – интегрально-дифференциальная (человечество еще только вступает в нее) призвана не только обосновать принципиальную целостность (интегральность) всего естествознания, но и сформировать действительно единую науку о Природе, рассматривая ее (Вселенную, Жизнь, Разум) как единый многогранный объект, с общими закономерностями развития.

Системность как свойство материи. Вернемся к вопросу о системности окружающего нас физического мира. Мы выяснили, что практической деятельности человека и его мышлению присуща системность. Но не специфическое ли это свойство человека, своего рода приспособление, выработанное для собственного удобства, упрощения своей деятельности в окружающем мире, а мир ничего не имеет общего с нашими представлениями о нем.

До самого последнего времени попытки ответить на этот вопрос лежали исключительно в области философии. И философы – материалисты и идеалисты, метафизики и приверженцы диалектики, агностики и те, кто был убежден в познаваемости мира имели по этому вопросу различные мнения. Так, материалист – метафизик Ф.Бэкон считал, что умственные построения полностью произвольны и ничему в природе не соответствуют. Он писал: «…Человеческий разум в силу своей склонности легко предполагает в вещах больше порядка и единообразия, чем их находит. И в то же время, как многое в природе единично и совершенно не имеет себе подобия, он придумывает параллели, соответствия и отношения, которых нет». Голландский философ – материалист XVII в Б.Спиноза высказывался в совершенно противоположном духе: «… порядок и связь идей та же, что порядок и связь вещей…» поскольку «…субстанция мыслящая и субстанция протяженная составляют одну и ту же субстанцию».

И. Кант считал, что мы должны «…предполагать систематическое единство природы непременно как объективно значимое и необходимое», а системность разума призвана искать в природе это вещество.

К.Маркс подчеркивал роль практики как критерия соответствия мышления человека действительности. Ленин неоднократно указывал, что познание есть бесконечный процесс приближения мышления к объекту, сопровождающийся возникновением противоречий и развитию их.

Действительно реальность и ее мысленное отображение не идентичны, не идентичны между собой естественные и искусственные системы. И тем не менее системность нашего мышления вытекает из системности мира Современная наука представляет мир как бесконечную иерархию систем, находящихся в непрерывном развитии.

Подводя некоторый итог, можно сделать следующее заключение.

Системность мира представляется в виде объективно существующей иерархии различно организованных взаимодействующих систем.


Системность мышления реализуется в том, что знания представляются в виде иерархической системы взаимосвязанных моделей.

2. Эволюция системных представлений

Надо сказать, что осознание системности мира и мышления всегда отставало от системности (эмпирической) человеческой практики.

История развития системных представлений шла как бы по разным направлениям и с разных исходных позиций. С одной стороны к современному пониманию шла философия, с другой – конкретные науки. В своем движении к истине они неминуемо должны были сойтись, что, в сущности и происходит в настоящее время.

Результаты философии относятся к множеству всех существующих и мыслимых систем, носят всеобщий характер. Чтобы применить их к конкретным ситуациям мы должны использовать дедуктивный метод.

Конкретные науки большей частью придерживаются противоположного, индуктивного метода, т.е. от исследования реальных, конкретных систем к установлению общих закономерностей.

Особый интерес представляют те моменты в истории, когда системность сама по себе становилась объектом исследования для естественных и технических наук.

2.1. Рождение понятия "система" (2500-2000 г. до н.э). Слово "система" появилось в Древней Греции и означало "сочетание", "организм", "организация", "союз", а также "нечто, поставленное вместе, приведенное в порядок".

2.2. Первая естественнонаучная (механическая) картина мира. Идеи Галилея (1564-1642) и И.Ньютона (1642-1727). Выработана определенная концепция системы с категориями: вещь и свойства , целое и часть .

2.3. Немецкая классическая философия. Глубокая и основательная разработка идеи системной организации научного знания. Структура научного знания стала предметом специального философского анализа.

2.4. Теоретическое естествознание XIX - XX вв. Различение объекта и предмета познания, повышение роли моделей в познании, исследование системообразующих принципов (порождение свойств целого из свойств элементов и свойств элементов из свойств целого).

2.5. Кибернетика. В 1834 году знаменитый физик М.-А. Ампер опубликовал книгу, содержащую классификации всевозможных наук (в том числе и пока не существовавших). Среди них он выделил специальную науку об управлении государством и назвал ее кибернетикой (от слова kbervik, первоначально означавшего управление кораблем, а затем получившего у самих греков более широкое значение искусства управления вообще).

В 1843 году появилась книга польского философа Б.Трентовского (по материалам курса лекций, который он читал ранее). Книга называлась «Отношение философии к кибернетике как к искусству управления народом». Это была попытка построения научных основ практической деятельности руководителя, которого он называл «кибернетом» (подробнее - в 1).

Общество середины прошлого века было не готово воспринять идеи кибернетики. Практика управления тогда еще могла обходиться без науки управления. И кибернетика была забыта.

В дальнейшем идеи системности появлялись и в других областях науки. Так, академик С. Федоров, исследуя явление кристаллизации веществ, установил некоторые закономерности развития систем, в частности, он указывал, что главным средством жизнеспособности и прогресса систем является не их приспособленность, а их способность к приспособлению, не стройность, а способность к повышению стройности.

2.6. Тектология. Следующий крупный вклад в теорию систем был внесен А.А.Богдановым (Малиновским) – личностью талантливой, всесторонней, увлекающейся. (Это его, автора собственной философии – эмпириомонизма критиковал Ленин в книге «Материализм и эмпириокритицизм»). Он активно участвовал в политической деятельности, был в социально-демократической партии, затем вышел из нее, то после революции вошел в состав Коммунистической академии написал «Краткий курс политической экономии». Он, кроме того, является и автором нескольких научно-фактических произведений. Основной же его профессией была медицина.

К 1925 г. он завершил свой трехтомный труд «Всеобщая организационная наука (тектология)». В его основу положена идея о том, что все существующие объекты и процессы имеют определенную степень, уровень организованности. В отличие от конкретных естественных наук, изучающих специфические особенности организации конкретных явлений, тектология должна изучать общие закономерности организации для всех уровней организованности. Все явление рассматриваются как непрерывные процессы организации и дезорганизации. Отмечается, что уровень организации тем выше, чем сильнее свойства целого отличаются от простой суммы свойств его частей.

Основное внимание в тектологии Богданова уделяется закономерностям развития организации, рассмотрению соотношений устойчивого и изменчивого , значению обратных связей , учету собственных целей организации (которые могут как содействовать целям высшего уровня организации, так и противоречить им).

Примеры: человеческое общество – экологический аспект, социально-экономический аспект, человеческий организм – иммунитет и т.п.

Кроме того, Богданов подчеркивал роль моделирования и математики , как потенциальных методов решения задач тектологии. Таким образом он предвосхитил многие положения современных кибернетических и системных теорий.

Став директором первого в мире института переливания крови (созданного по его же идее и при поддержке В.И.Ленина) он стал проверять некоторые выводы своей теории на примере кровеносной системы, проводя на себе рискованные опыты. Один из них завершился гибелью ученого. Тектология, также как и кибернетика в своем первом явлении миру, была на какое-то время забыта, и о ней вспомнили только тогда, когда и другие стали приходить к тем же результатам.

2.7. Кибернетика Винера

Можно сказать, что мир «созрел» для массового усвоения системных понятий и сознания системности мира к концу 40-х годов нашего века, когда в 1948 г. американский математик Н.Винер опубликовал книгу под названием «Кибернетика». Вначале он определил кибернетику как «науку об управлении и связи в животных и машинах » . Однако уже в следующей своей книге «Кибернетика и общество» он расширяет это определение и анализирует с позиций кибернетики процессы, происходящие в обществе. В 1956 г. в париже состоялся Первый международный конгресс по кибернетике.

После того, как кибернетика в СССР перестала называться лженаукой, в ее становлении внесли вклад и наши ученые, при этом появились новые определения, в частности:

«Кибернетика – это наука об оптимальном управлении сложными динамическими системами» (А.И.Берг).

«Кибернетика – это наука о системах, воспринимающих, хранящих, перерабатывающих и использующих информацию» (А.Н.Колмогоров).

Из этих определений видно, что предметом кибернетики является исследование систем , причем для кибернетики в принципе несущественно, какова природа этой системы, т.е. является ли она физической, биологической, экономической, организационной или даже воображаемой. Таким образом «кибернетика» вторгается в совершенно разнородные сферы. в приводится такой аналог: мир может быть представлен как как «булка», каждая наука, изучающая мир, – «ломоть» поперек, а кибернетика – это «ломоть» вдоль.

В рамках кибернетики Винера произошло дальнейшее развитие системных представлений, а именно:

    типизация моделей систем;

    выявление значения обратных связей в системе;

    подчеркивание принципа оптимальности в управлении и синтезе систем;

    понятие информации как всеобщего свойства материи, осознание возможности ее количественного описания;

    развитие методологии моделирования вообще и в особенности машинного эксперимента , т.е. математическая экспертиза с помощью ЭВМ.

2.8. Общая теория систем Л. Берталанфи. Общая теория систем – это как бы параллельный, независимый по отношению к кибернетике, подход к науке о системах. В 1950 г. австрийский биолог Л. Берталанфи опубликовал книгу «Основы общей теории систем». Берталанфи пытался отыскивать структурное сходство законов, установленных в различных дисциплинах и, обобщая их, выводить общесистемные закономерности.

Берталанфи подчеркивал особое значение обмена системы веществом, энергией и информацией (отрицательной энтропией или негэнтропией) с окружающей средой. В открытой системе устанавливается динамическое равновесие, которое может быть направлено в сторону усложнения организации вопреки второму закону термодинамики (благодаря вводу негэнтропии извне). В этом случае функционирование системы – это не просто отклик на изменение внешних условий, а сохранение старого или установление нового подвижного внутреннего равновесия системы (гомеостазиса).

Если в кибернетике Винера изучались лишь внутрисистемные обратные связи, а функционирование систем рассматривалось как отклик на внешние воздействия, то Берталанфи, развивая идеи физика Шредингера, разработал концепцию организма как открытой системы и сформулировал программу построения общей теории систем.

2.9. Синергетика

Еще один подход к исследованию систем связан с так называемой бельгийской школой во главе с И. Пригожиным. Этот ученый занимался термодинамикой неравновесных физических систем (Нобелевская премия 1977 г.) и обнаружил, что выявленные им закономерности справедливы для систем любой природы. Он как бы заново открыл уже известные свойства систем, но, кроме этого, предложил новую теорию динамики систем. Суть его теории заключается в следующем.

Материя не является пассивной субстанцией; ей присуща спонтанная активность, вызванная неустойчивостью неравновесных состояний, в которые приходит система в результате взаимодействия с окружающей средой. Так реализуется механизм самоорганизации систем, причем в особые «переломные» моменты (точки бифуркации) принципиально невозможно предсказать, станет ли система менее или более организованной .

Контрольные вопросы

    Может ли какое-либо явление быть несистемным?

    Что такое проблемная ситуация?

    Какая, по-вашему, деятельность не может быть алгоритмизирована?

    Приведите пример деятельности, которая ранее считалась чисто эвристической, а теперь успешно алгоритмизирована?

    Какие особенности мышления позволяют утверждать, что оно системно?

    Приведите аргументы в пользу системности всей материи.

    Каковы основные события в развитии системных представлений в течение последних 150 лет?

    Что означает греческое слово «система»?

    В чем отличие кибернетики Винера и теории систем Берталанфи?

    Какой взгляд на системность мира выражает синергетика?

Литература

    Ф.И.Перегудов, Ф.П.Тарасов. Введение в системный анализ. М.: «Высшая школа», 1989. 519.8(07)У П27.

    В.А.Губанов и др. Введение в системный анализ. Л., 1988.

    Р.Пэнтл. Методы системного анализа окружающей среды. М.: Мир, 1979.

    Н.В.Чепурных, А.Л.Новоселов. Экономика и экология. Развитие, катастрофы. М.: Наука, 1996.

    Д.Б.Браун. Системы обеспечения техники безопасности. М.: 1979.

    Спицнадель В.Н. Основы системного анализа. - СПб.: Издательский дом «Бизнес-пресса».

Обыденная трактовка рассмотренных ниже понятий (элемент, связь и др.) не всегда совпадает с их значением как специальных терминов системного описания и анализа объектов. Поэтому кратко рассмотрим основные понятия, помогающие уточнять представление о системе.

Обычно принято делить понятия на две группы (рис. 1.3): 1) понятия, входящие в определения системы и характеризующие ее строение; 2) понятия, характеризующие функционирование и развитие системы.

Рис. 1.3

Понятия, характеризующие строение системы

Понятия, входящие в определение системы, тесно связаны между собой и, по мнению Л. фон Берталанфи , не могут быть определены независимо, а определяются, как правило, одно через другое, уточняя друг друга, и поэтому принятую здесь последовательность их изложения следует считать условной.

Элемент . Под элементом принято понимать простейшую, неделимую часть системы. Однако ответ на вопрос, что является такой частью, может быть неоднозначным.

Пример

В качестве элементов стола можно назвать "ножки, ящики, крышку и т.д.", а можно – "атомы, молекулы", в зависимости от того, какая задача стоит перед исследователем.

Аналогично в системе управления предприятием элементами можно считать подразделения аппарата управления, а можно – каждого сотрудника или каждую операцию, которую он выполняет. С непониманием этой проблемы была связана типичная ошибка при обследовании существующей системы управления как первой стадии разработки АСУ: инженеры в соответствии со своим подходом обеспечения полноты подвергали анализу все документы, вплоть до реквизитов, что существенно затягивало работу, в то время как для разработки технического задания на создание АСУП такой детализации не требовалось.

Поэтому примем следующее определение: элемент это предел членения системы с точки зрения аспекта рассмотрения , решения конкретной задачи, поставленной цели.

Для помощи в выделении элементов при анализе конкретных проблемных ситуаций можно, как показано в гл. 3, использовать информационный подход, и в частности, меру информации восприятия J = А/ΔА, где ДА – минимальное количество материального свойства А (квант), с точностью до которого исследователя интересует информация об этом свойстве при формировании модели. Примеры использования этого способа определения элементной базы будут приведены в гл. 6–8 (в частности, при моделировании рыночной ситуации).

Систему можно расчленять на элементы различными способами в зависимости от формулировки задачи, цели и ее уточнения в процессе проведения системного исследования. При необходимости можно изменять принцип расчленения, выделять другие элементы и получать с помощью нового расчленения более адекватное представление об анализируемом объекте или проблемной ситуации.

Определяя элемент, пришлось употребить понятие цель, которое будет охарактеризовано ниже (понятия, входящие в определение системы, как было отмечено выше, не могут быть определены независимо друг от друга), поэтому была сделана попытка не использовать понятие цели, а поставить рядом с ним понятия аспекта рассмотрения, задачи, хотя точнее использовать понятие цель.

Компоненты и подсистемы. Иногда термин "элемент" используют в более широком смысле, даже в тех случаях, когда система не может быть сразу разделена на составляющие, являющиеся пределом ее членения. Однако при многоуровневом расчленении системы лучше использовать другие термины, предусмотренные в теории систем: сложные системы принято вначале делить на подсистемы, или на компоненты.

Понятие "подсистема" подразумевает, что выделяется относительно независимая часть системы, обладающая свойствами системы, и в частности, имеющая подцель, на достижение которой ориентирована подсистема, а также другие свойства – целостности, коммуникативности и т.п., определяемые закономерностями систем, рассматриваемыми в параграфе 1.6.

Если же части системы не обладают такими свойствами, а представляют собой просто совокупности однородных элементов, то такие части принято называть компонентами.

Расчленяя систему на подсистемы, следует иметь в виду, что так же, как и при расчленении на элементы, выделение подсистем зависит от цели и может меняться по мере ее уточнения и развития представлений исследователя об анализируемом объекте или проблемной ситуации.

Связь . Понятие "связь" входит в любое определение системы и обеспечивает возникновение и сохранение ее целостных свойств. Это понятие одновременно характеризует и строение (статику), и функционирование (динамику) системы.

Связь определяют как ограничение степени свободы элементов. Действительно, элементы, вступая во взаимодействие (связь) друг с другом, утрачивают часть своих свойств, которыми они потенциально обладали в свободном состоянии.

В определениях системы термины "связь" и "отношение" обычно используются как синонимы. Однако существуют разные точки зрения: одни исследователи считают связь частным случаем отношения; другие – напротив, отношение рассматривают как частный случай связи; третьи – предлагают понятие "связь" применять для описания статики системы, ее структуры, а понятием отношение характеризовать некоторые действия в процессе функционирования (динамики) системы. Не решен (и, видимо, вряд ли может быть решен в общем виде) вопрос о достаточности и полноте сети связей для того, чтобы систему можно было считать системой. Один из подходов к решению этой проблемы предлагается, например, В. И. Николаевым и В. М. Бруком , которые считают, что для того, чтобы система не распалась на части, необходимо обеспечить превышение суммарной силы (мощности) связей между элементами системы, т.е. внутренних связей, над суммарной мощностью связей между элементами системы и элементами среды, т.е. внешних связей:

К сожалению, на практике подобные измерения (особенно в организационных системах) трудно реализовать, однако можно оценивать тенденции изменения этого соотношения с помощью косвенных факторов.

Связи можно охарактеризовать направлением, силой, характером (или видом). По первому признаку связи делят на направленные и ненаправленные. По второму – на сильные и слабые (иногда пытаются ввести "шкалу" силы связей для конкретной задачи). По характеру (виду) различают связи подчинения, порождения (или генетические), равноправные (или безразличные), управления.

Связи в конкретных системах могут быть одновременно охарактеризованы несколькими из названных признаков.

Важную роль в моделировании систем играет понятие обратной связи, модели которой приведены в параграфе 2.6. Обратная связь является основой саморегулирования, развития систем, приспособления их к изменяющимся условиям существования.

Многоконтурные модели управления экономическими системами предлагались, например, в словаре-справочнике по математике и кибернетике в экономике . При разработке моделей функционирования сложных саморегулирующихся, самоорганизующихся систем в них, как правило, одновременно присутствуют и отрицательные, и положительные обратные связи. На использовании этих понятий базируется, в частности, имитационное динамическое моделирование .

Цель . Понятие "цель" и связанные с ним понятия "целесообразность" и "целенаправленность" лежат в основе развития системы.

Изучению этих понятий большое внимание уделяется в философии, психологии, кибернетике.

Процесс целеобразования и соответствующий ему процесс обоснования целей в организационных системах весьма сложен. На протяжении всего периода развития философии и теории познания происходило развитие представлений о цели (с историей развития понятия "цель" можно познакомиться в книге М. Г. Макарова ).

Анализ определений цели и связанных с ней понятий показывает, что в зависимости от стадии познания объекта, этапа системного анализа, в понятие "цель" вкладывают различные оттенки (рис. 1.4) – от идеальных устремлений (цель – "выражение активности сознания " ; "человек и социальные системы вправе формулировать цели, достижение которых, как им заведомо известно, невозможно, но к которым можно непрерывно приближаться" ), до конкретных целей – конечных результатов, достижимых в пределах некоторого интервала времени, формулируемых иногда даже в терминах конечного продукта деятельности .

В некоторых определениях цель как бы трансформируется, принимая различные оттенки в пределах условной "шкалы" – от иде-

альных устремлений к материальному воплощению, конечному результату деятельности.

Например, М. Г. Макаров , наряду с приведенным выше определением, целью называет "то, к чему стремится, чему поклоняется и за что борется человек" ("борется" подразумевает достижимость в определенном интервале времени); Л . А. Растригин и П. С. Граве , под целью понимают "модель желаемого будущего" (при этом в понятие "модель" можно вкладывать различные оттенки реализуемости) и, кроме того, вводится понятие, характеризующее разновидность цели, и кроме того, вводят понятие "мечта" – это цель, не обеспеченная средствами ее достижения" . Противоречие, заключенное в понятии "цель" – необходимость быть побуждением к действию "опережающим отражением" (термин введен П. К. Анохиным ), или "опережающей идеей", и одновременно материальным воплощением этой идеи, т.е. быть достижимой, – проявлялось с момента возникновения этого понятия: так, древнеиндийское понятие "артха" включало в себя одновременно значения терминов "мотив", "причина", "желание", "цель" и даже – "способ".

В русском языке вообще не было термина "цель". Этот термин заимствован из немецкого и имеет значение, близкое к понятиям "мишень", "финиш", "точка попадания". В английском языке есть несколько терминов, отражающих различные оттенки понятия цели, в пределах рассматриваемой "шкалы".

Пример

Purpose (цель – намерение, целеустремленность, воля), object и objective (цель – направление действия, направление движения), aim (цель – стремление, прицел, указание), goal (цель – место назначения, задача), target (цель – мишень для стрельбы, задание, план), end (цель – финиш, конец, окончание, предел).

Сущность диалектической трактовки понятия цели раскрывается в теории познания, в которой показывается взаимосвязь понятий цели, оценки, средства, целостности (и ее "самодвижения").

Изучение взаимосвязи этих понятий показывает, что, в принципе, поведение одной и той же системы может быть описано и в терминах цели или целевых функционалов, связывающих цели со средствами их достижения (такое представление называют аксиологическим (53]), и без упоминания понятия цели, в терминах непосредственного влияния одних элементов или описывающих их параметров на другие, в терминах "пространства состояний" (или каузально ). Поэтому одна и та же ситуация в зависимости от склонности и предшествующего опыта исследователя может быть представлена тем или иным способом. В большинстве практических ситуаций лучше понять и описать состояние системы и ее будущее позволяет сочетание этих представлений.

Для того чтобы отразить диалектическое противоречие, заключенное в понятии "цель", в БСЭ дается следующее определение: цель – "заранее мыслимый результат сознательной деятельности человека, группы людей" .

"Заранее мыслимый", но все же "результат", воплощение замысла; подчеркивается также, что понятие цели связано с человеком, его "сознательной деятельностью", т.е. с наличием сознания, а для характеристики целеустремленных, негэнтропийных тенденций на более низких ступенях развития материи принято использовать другие термины.

Рассмотренное понимание цели очень важно при организации процессов коллективного принятия решений в системах управления.

В реальных ситуациях необходимо оговаривать, в каком смысле на данном этапе рассмотрения системы используется понятие "цель", что в большей степени должно быть отражено в ее формулировке – идеальные устремления, которые помогут коллективу лиц, принимающих решение, увидеть перспективы, или реальные возможности, обеспечивающие своевременность завершения очередного этапа на пути к желаемому будущему.

Проведенный анализ определений понятия "цель" и графическая интерпретация "размытости" философских трактовок цели (см. рис. 1.4), стали важным шагом на пути к практической реализации процессов целеобразования.

В более поздних работах В. А. Чабровского, Г. М. Вапнэ, А. М. Гендина было выработано весьма полезное для практического применения представление о двух различных понятиях цели: "цель деятельности" (актуальная, конкретная цель) и бесконечная по содержанию "цель – стремление" (цель – идеал, потенциальная цель) ; предложена концепция анализа процесса формулирования и структуризации целей с позиций диалектической логики и высказана идея о единстве цели, средства (варианта) ее достижения и критерия оценки.

Структура . Система может быть представлена, как уже отмечалось, простым перечислением элементов или черным ящиком (моделью "вход – выход"). Однако чаще всего при исследовании объекта такого представления недостаточно, так как требуется выяснить, что собой представляет объект, что в нем обеспечивает выполнение поставленной цели, получение требуемых результатов. В этих случаях систему отображают путем расчленения на подсистемы, компоненты, элементы с взаимосвязями, которые могут носить различный характер, и вводят понятие "структура".

Структура (от лат. "structure", означающего строение, расположение, порядок) отражает "определенные взаимосвязи, взаиморасположение составных частей системы, ее устройство, строение " .

При этом в сложных системах структура включает не все элементы и связи между ними (в предельном случае, когда пытаются применить понятие структуры к простым, полностью детерминированным объектам, понятия структуры и системы совпадают), а лишь наиболее существенные компоненты и связи, которые мало меняются при текущем функционировании системы и обеспечивают существование системы и ее основных свойств. Иными словами, структура характеризует организованность системы, устойчивую упорядоченность элементов и связей.

Структурные связи обладают относительной независимостью от элементов и могут выступать как инвариант при переходе от одной системы к другой, перенося закономерности, выявленные и отраженные в структуре одной из них, на другие. При этом системы могут иметь различную физическую природу.

Одна и та же система может быть представлена разными структурами в зависимости от стадии познания объектов или процессов, от аспекта их рассмотрения, цели создания. При этом по мере развития исследований или в ходе проектирования структура системы может изменяться.

Структуры, особенно иерархические, как показано ниже, могут помочь в раскрытии неопределенности сложных систем. Иными словами, структурные представления систем являются средством их исследования.

В связи с этим полезно выделить определенные виды (классы) структур и исследовать их, что подробнее рассмотрено в параграфе 1.3.

  • БСЭ. – 2-е изд. – Т. 46. – С. 498.
  • БСЭ. – 2-е изд. – Т. 41. – С. 154.

Понятия «система» и «системность» играют важную роль в современной науке и практике.

Начиная с середины XX в. ведутся интенсивные разработки в области системного подхода к исследованиям и теории систем. В то же время само понятие системы имеет длительную историю. Первоначально системные представления сформировались в рамках философии: еще в античном мире был сформулирован тезис о том, что целое больше суммы его частей.

Древние философы (Платон, Аристотель и др.) толковали систему как мировой порядок, утверждая, что системность - свойство природы.

Принципы системности активно исследовались в философии (например, И. Кант стремился обосновать системность самого процесса познания) и в естественных науках. Наш соотечественник Е. Федоров в конце XIX в. пришел к выводу о системности природы в процессе создания кристаллографии.

Принцип системности в экономике формулировал и А. Смит, сделавший вывод, что эффект действия людей, организованных в группу, больше, чем сумма одиночных результатов.

Теория систем служит методологической базой теории управления. Это относительно молодая наука, организационное становление которой произошло во второй половине XX в.

Родоначальником теории систем считается австрийский ученый Л. фон Берталанфи.

Первый международный симпозиум по системам состоялся в Лондоне в 1961 г. Первый доклад на нем сделал выдающийся английский кибернетик С. Бир, что можно считать свидетельством гносеологической близости кибернетики и теории систем.

Центральное понятие теории систем - система (от греческого systema - «целое, составленное из частей»). Система - объект произвольной природы, обладающий выраженным системным свойством, которым не обладает ни одна из частей системы при любом способе ее членения, свойством, не выводимом из свойств частей.

В настоящем пособии мы будем использовать следующее рабочее определение системы: «Система - это целостная совокупность взаимосвязанных элементов, имеющая определенную структуру и взаимодействующая с окружающей средой в интересах достижения цели». Анализируя это определение, мы можем выявить несколько базисных понятий: целостность, совокупность, структурированность, взаимодействие со внешней средой, наличие цели и др. Они представляют собой систему понятий, т. е. внутреннюю организацию некоторого устойчивого объекта, целостность которого и есть система. Сама возможность выделить в поле исследования устойчивые объекты определяется свойством целостности системы, целями наблюдателя и возможностями его воспринимать действительность.


Основоположниками системного подхода являются: Л. фон Берталанфи, А. А. Богданов, Г. Саймон, П. Друкер, А. Чандлер.

Системный подход – это методологическое направление, состоящее в исследовании сложных объектов с использованием системного анализа.

Системный подход - направление методологии исследования, в основе которого лежит рассмотрение объекта как целостного множества элементов в совокупности отношений и связей между ними, то есть рассмотрение объекта как системы.

Говоря о системном подходе, можно говорить о некотором способе организации наших действий, таком, который охватывает любой род деятельности, выявляя закономерности и взаимосвязи с целью их более эффективного использования. При этом системный подход является не столько методом решения задач, сколько методом постановки задач. Как говорится, «Правильно заданный вопрос - половина ответа». Это качественно более высокий, нежели просто предметный, способ познания.

Анализ внутреннего строения организации обеспечивается с помощью использования системного подхода.

Для понимания сути и роли системного подхода в теории организаций рассмотрим первоначально понятие системы, ее отличительные признаки, состав компонентов.

Рассмотрим некоторые основные термины и понятия, широко используемые в системных исследованиях:

Система – множество взаимосвязанных элементов, объединенных ради достижения общей цели в единое целое, взаимодействие между которыми характеризуется упорядоченностью и регулярностью на отдельном отрезке времени. К основным компонентам системы относят: элементы системы, взаимоотношения между элементами, подсистемы, структуру системы. Система - совокупность взаимосвязанных элементов, образующих целостность или единство.

Элемент системы – это минимальная целая часть системы, которая функционально способна отразить некоторые общие закономерности системы в целом. Минимальность определяется субъектом исследования как часть, достаточная для удовлетворения познавательной потребности.

Взаимоотношения, или связи между элементами системы, выражаются через обмен веществом, энергией, информацией. Они бывают прямые и обратные, положительные и отрицательные, нейтральные или функциональные.

Подсистема – часть системы, состоящая из элементов, которые возможно объединить по схожим функциональным проявлениям. В зависимости от количества функций в системах может быть разное число подсистем.

Структура системы – это совокупность связей между элементами системы, ее подсистемами, между системой и внешней средой. Если рассматривают совокупность связей внутри системы, структуру считают внутренней. Если рассматриваются связи как внутри, так и с внешней средой, структура считается полной. Структура - способ взаимодействия элементов системы посредством определенных связей (картина связей и их стабильностей).

Процесс - динамическое изменение системы во времени.

Функция - работа элемента в системе.

Состояние - положение системы относительно других её положений.

Системный эффект - такой результат специальной переорганизации элементов системы, когда целое становится больше простой суммы частей.

Структурная оптимизация - целенаправленный итерационный процесс получения серии системных эффектов с целью оптимизации прикладной цели в рамках заданных ограничений. Структурная оптимизация практически достигается с помощью специального алгоритма структурной переорганизации элементов системы. Разработана серия имитационных моделей для демонстрации феномена структурной оптимизации и для обучения.

Состояние системы - упорядоченное множество существенных свойств, которыми она обладает в определенный момент времени.

Свойства системы - совокупность параметров, определяющих поведение системы.

Поведение системы - реальное или потенциальное действие системы.

Действие - происходящее с системой событие, вызванное другим событием.

Событие - изменение по крайней мере одного свойства системы.

Отличительными признаками системы выступают:

Наличие взаимосвязанных частей в объекте,

Взаимодействие между частями объекта,

Упорядоченность данного взаимодействия ради достижения общей цели системы.

Понятия "система" и "системность" играют важную роль в современной науке и практической деятельности. Интенсивные разработки в области системного подхода и теории систем ведутся, начиная с середины ХХ в. Однако само понятие "система" имеет гораздо более давнюю историю. Первоначально системные представления формировались в рамках философии: еще в античности был сформулирован тезис о том, что целое больше суммы его частей. Древние философы (Платон, Аристотель и др.) толковали систему как мировой порядок, утверждая, что системность - свойство природы. Позднее И. Кант (1724-1804) обосновал системность самого процесса познания. Принципы системности активно исследовались и в естественных науках. Наш соотечественник Е. Федоров (1853-1919) в процессе создания науки кристаллографии пришел к выводу о системности природы.

Принцип системности в экономике сформулировал А. Смит (1723-1790), сделавший вывод , что эффект действия людей, организованных в группу, больше, чем сумма одиночных результатов.

Различные направления исследований системности позволили сделать вывод о том, что это свойство природы и свойство деятельности человека (рис. 2.1).

Теория систем служит методологической базой теории управления. Это относительно молодая наука, организационное становление которой произошло во второй половине ХХ в. Родоначальником теории систем считается австрийский ученый Л. Берталанфи (1901-1972). Первый международный симпозиум по системам состоялся в Лондоне в 1961 г. Первый доклад на этом симпозиуме сделал выдающийся английский кибернетик С. Бир, что можно считать свидетельством гносеологической близости кибернетики и теории систем.

Центральным в теории систем является понятие "система" (от греч. systēma - целое, составленное из частей, соединение). Система - объект произвольной природы, обладающий выраженным системным свойством, которым не обладает ни одна из частей системы при любом способе ее членения, не выводимом из свойств частей.


Рис. 2.1.

Приведенное определение нельзя считать исчерпывающим - оно отражает лишь некий общий подход к изучению объектов. В литературе по системному анализу можно найти множество определений системы (см. Приложение 1).

В настоящем учебнике мы будем использовать следующее рабочее определение системы:

" Система - это целостная совокупность взаимосвязанных элементов. Она имеет определенную структуру и взаимодействует с окружающей средой в интересах достижения поставленной цели".

Данное определение позволяет выявить следующие базисные понятия:

  • целостность;
  • совокупность;
  • структурированность;
  • взаимодействие с внешней средой;
  • наличие цели.

Они представляют собой систему понятий, т. е. внутреннюю организацию некоторого устойчивого объекта, целостность которого и есть система. Сама возможность выделения в поле исследования устойчивых объектов определяется свойством целостности системы, целями наблюдателя и возможностями его восприятия действительности.

Загрузка...
Top