Приведение системы пар сил к простейшему виду или сложение пар сил. Свойства пар сил

Пусть к твердому телу приложены одновременно несколько пар сил с моментами , действующих в различных плоскостях. Можно ли эту систему пар привести к более простому виду? Оказывается, что можно, и ответ подсказывается следующей теоремой о сложении двух пар.

Теорема. Две пары сил, действующие в разных плоскостях, эквивалентны одной паре сил с моментом, равным геометрической сумме моментов заданных пар.

Пусть пары заданы своими моментами и (рис. 36,а). Построим две плоскости, перпендикулярные этим векторам (плоскости действия пар) и, выбрав некоторый отрезок АВ на линии пересечения плоскостей за плечо, общее для обеих пар, построим соответствующие пары: (рис. 36, б).

В соответствии с определением момента пары можем написать

В точках А и В имеем сходящиеся силы. Применяя правило параллелограмма сил (аксиома 3), будем иметь:

Заданные пары оказываются эквивалентными двум силам , также образующим пару. Тем самым первая часть теоремы доказана. Вторая часть теоремы доказывается прямым вычислением момента результирующей пары:

Если число пар то, попарно складывая их в соответствии с этой теоремой, можно любое число пар привести к одной паре. В результате приходим к следующему выводу: совокупность (систему) пар сил, приложенных к абсолютно твердому телу, можно привести к одной паре с моментом, равным геометрической сумме моментов всех заданных пар.

Математически это можно записать следующим образом:

На рис. 37 дается геометрическая иллюстрация полученного вывода.

Для равновесия пар сил требуется, чтобы момент результирующей пары был равен нулю, что приводит к равенству

Это условие можно выразить в геометрической и аналитической форме. Геометрическое условие равновесия пар сил: чтобы система пар сил находилась в равновесии, необходимо и достаточно, чтобы векторный многоугольник, построенный из моментов всех пар, был замкнутым.

Аналитическое условие равновесия пар сил: чтобы система пар сил находилась в равновесии, необходимо и достаточно, чтобы алгебраические суммы проекций векторов-моментов всех пар на произвольно выбранные координатные оси Oxyz были равны нулю:

Если все пары лежат в одной плоскости, то есть образуют плоскую систему пар, получается лишь одно аналитическое условие равновесия-сумма алгебраических моментов пар равна нулю.

Вопросы для самопроверки

1. В чем состоит правило силового многоугольника? Для чего служит силовой многоугольник?

2. Как найти равнодействующую сходящихся сил аналитическим способом?

3. В чем состоит геометрическое условие равновесия сходящихся сил? Как формулируется это же условие аналитически?

4. Сформулируйте теорему о трех силах.

5. Какие задачи статики называются статически определенными и какие - статически неопределенными? Приведите пример статически неопределенной задачи.

6. Что называется парой сил?

7. Что называется моментом (вектором-моментом) пары сил? Каковы направление, модуль и точка приложения момента?

8. Что называется алгебраическим моментом пары?

9. Сформулируйте правило сложения пар, произвольным образом расположенных в пространстве.

10. В чем заключаются векторное, геометрическое и аналитическое условия равновесия системы пар сил?


Теорема трех непараллельных силах

Линии действия трех непараллельных взаимно уравновешивающихся сил, лежащих в одной плоскости, пересекаются в одной точке. Пусть к твердому телу в точках А 1 , А 2 , А 3 , приложены три непараллельные взаимно уравновешивающиеся силы P 1 P 2 P 3 (все Р с векторами), лежащие в одной плоскости (рис. 5). Перенесем силы P 1 P 2 в точку О пересечения линий их действия и найдем равнодействующую R, которая будет приложена в этой же точке. Сила P 3 , будучи уравновешивающей, системы сил P 1 P 2 , равна по модулю их равнодействующей R и направлена по линии ее действия в противоположную сторону. Следовательно, линия действия силы P 3 проходит через точку О, что и требовалось доказать.

Пара cил. Свойства пары сил

Систему двух равных по модулю параллельных сил, направленных в противоположные стороны и не лежащих на одной прямой, называют парой сил. Плоскость, в которой находиться линия действия пары сил, называется плоскостью действия пары сил. Любые две силы, кроме сил, образующих пару, можно заменить равнодействующей. Пара сил не имеет равнодействующей и никакими способами пару сил нельзя преобразовать к одной эквивалентной силе. Пара сил стремится произвести вращение твердого тела, к которому она приложена. Пара- такой же самостоятельный простейший механический элемент, как и сила. Кратчайшее расстояние между линиями сил, образующих пару, называют плечом пары d. Действие пары на тело характеризуется моментом, стремящимся вращать тело. Произведение модуля одной из сил пары на ее плечо называют моментом пары и обозначают M = P d .

Момент пары сил изображают вектором (рис. 6). Вектор момента пары сил, направляют перпендикулярно к плоскости действия пары сил в такую сторону, чтобы, смотря навстречу этому вектору, видеть пару сил, стремящуюся вращать плоскость ее действия в сторону, обратную вращению часовой стрелки.

При этом если пара сил вращает тело против часовой стрелки, то момент такой пары считается положительным, если по часовой стрелке, то момент считается отрицательным.

Свойства пар.

Не изменяя действия на тело, пару сил можно:

1. Как угодно перемещать в ее плоскости;

2. Переносить в любую плоскость, параллельную плоскости действия этой пары;

3. Изменять модуль сил и плечо пары, но так, чтобы ее момент (т.е. произведение модуля силы на плечо) и направление вращения оставались неизменными;

4. Алгебраическая сумма проекций сил, образующих пару, на любую ось равна нулю;

5. Алгебраическая сумма моментов сил, образующих пару, относительно любой точки постоянна и равна моменту пары.

Условие эквивалентности пар сил. Сложение пар сил.

Пары сил в пространстве эквивалентны, если их моменты геометрически равны. Из приведенных теорем следует, что, не изменяя действие пары сил на твердое тело, пару сил можно переносить в любую плоскость, параллельную плоскости ее действия, а также изменять ее силы и плечо, сохраняя неизменным модуль и направление ее момента. Таким образом, вектор момента пары сил можно переносить в любую точку, т.е. момент пары сил является свободным вектором. Вектор момента пары сил определяет все три ее элемента: положение плоскости действия пары, направление вращения и числовое значение момента.

Сложение пар сил:

Геометрическая сумма моментов составляющих пар сил равна моменту эквивалентной им пары.

Установленное правило сложения моментов пар сил называется правилом параллелограмма моментов. Построение параллелограмма моментов можно заменить построением треугольника моментов. Применяя построение параллелограмма или треугольника моментов, можно решить и обратную задачу, т.е. разложить любую пару сил на две составляющие.

Пусть требуется сложить несколько пар сил, расположенных произвольно в пространстве. Определив моменты этих пар их можно перенести в любую точку О пространства. Складывая последовательно моменты этих пар сил, можно построить многоугольник моментов пар, замыкающая сторона которого определит момент эквивалентной им пары сил (рис. 7).

Момент пары сил, эквивалентной данной системе пар сил в пространстве, равен геометрической сумме моментов составляющих пар сил

Таким образом пары сил, произвольно расположенные в пространстве, взаимно уравновешиваются(находится в равновесии), если геометрическая сумма их моментов равна нулю.

Система пар, лежащих в одной плоскости или параллельных плоскостях, эквивалентна одной равнодействующей паре М, момент которой равен алгебраической сумме моментов слагаемых пар, т.е.

Плоская система пар находится в равновесии, если алгебраическая сумма моментов всех пар равна нулю, т.е.

Пара сил - совокупность двух параллельных друг другу сил равных по величине и направленных в противоположные стороны. Пара сил не может быть более упрощена (заменена одной силой) и представляет собой новую силовую характеристику механического взаимодействия.

Теорема о моменте пары сил. Момент пары сил не зависит от выбора центра привидения и равен произведению любой из сил пары на плечо пары, взятый со знаком «+» при вращении пары против часовой стрелки или со знаком «-» при вращении по часовой.

Плечо пары сил - длина перпендикуляра опущенного из любой точки линии действия одной силы к линии действия другой силы этой пары.

Теорема об эквивалентности пар сил в плоскости. Пары сил, лежащие в одной плоскости, эквивалентны, если их моменты численно равны и одинаковы по знаку.

Следствие. Пару сил, не изменяя ее действие на твердое тело, можно переносить в любое место в плоскости ее действия, поворачивать ее плечо на любой угол, а также изменять это плече и модули сил, не изменяя величины ее момента и направления вращения. Следовательно, основной характеристикой пары сил является ее момент.

Теорема об эквивалентности пар сил в пространстве. Пары сил в пространстве эквивалентны, если их моменты геометрически равны.

Следствие. Не изменяя действия пары сил на твердое тело, пару сил можно переносить в любую плоскость, параллельную плоскости ее действия, а также изменять ее силы и плечо, сохраняя неизменным модуль и направление ее момента. Вектор момента пары сил можно переносить в любую точку, т.е. момент пары сил является свободным вектором. Вектор момента пары сил определяет все три ее элемента: положение плоскости действия пары, направление вращения и числовое значение момента.

Теорема о сложении пар сил на плоскости. Систему пар сил можно заменить парой сил, момент которой равен алгебраической сумме моментов исходных пар. Кинематическое состояние тела не изменяется.

Условие равновесия системы пар сил:

Статические инварианты и динамические винты

Инварианты системы сил - величины, не зависящие от выбора центра приведения. Первый векторный инвариант - главный вектор системы сил .

Главный момент не является инвариантом т.к. зависит от центра привидения. Однако существует величина, связанная с главным вектором и не зависящая от центра приведения. Однако существует величина, связанная с главным вектором и не зависящая от центра привидения:

1)

3) .

Второй скалярный инвариант - скалярное произведение главного вектора на вектор главного момента.

.

Главный минимальный момент также инвариантная величина:

.

Динамический винт - совокупность действующих на тело силы F и пары сил с моментом М , лежащей в плоскости перпендикулярной силе F. К динамическому винту приводится в наиболее общем случае произвольная система сил, действующих на тело. Дальнейшее упрощение динамического винта не возможно, т.е. его нельзя заменить одной силой и одной парой сил. Можно лишь сложив F с одной из сил пары привести его к двум скрещивающимся силам.

Справедливость выводов, сделанных в конце § 9, можно доказать непосредственно.

Рассмотрим действующую на твердое тело пару сил F, F. Проведем в ллоскости действия этой пары через произвольные точки D и Е две параллельные прямые до пересечения их с линиями действия сил F, F в точках А и В (рис. 34) и приложим силы F, F в этих точках (первоначально F и F могли быть приложены в любых других точках на их линиях действия). Разложим теперь силу F по направлениям АВ и ЕВ на силы - по направлениям В А и AD на силы Q и Р. Очевидно при этом, что Силы Q и Q, как уравновешенные, можно отбрисить. В результате пара сил F, F будет заменена парой Р, Р с другим плечом и другими силами, которые можно, очевидно, приложить в точках D, Е на их линиях действия. При этом в силу произвольности в выборе точек D, Е и направлений прямых AD и BE пара Р, Р может оказаться расположенной в плоскости ее действия где угодно f? положение, при котором силы Р и Р параллельны F, пару можно привести, проделав указанное преобразование дважды).

Покажем в заключение, что пары имеют одинаковые моменты. Обозначим эти моменты соответственно через где согласно формуле Так как то но (см. подстрочное примечание на с. 32) и, следовательно,

Из доказанного вытекают следующие свойства пары сил:

1) пару, не изменяя оказываемого ею на твердое тело действия, можно переносить куда угодно в плоскости действия пары;

2) у данной пары, не изменяя оказываемого ею на твердое тело действия, можно произвольно менять модули сил или длину плеча, сохраняя неизменным ее момент.

Можно доказать, что пара сил обладает еще одним достаточно очевидным свойством (доказательство опускаем):

3) пару, не изменяя оказываемого ею на твердое тело действия, можно перенести из данной плоскости в любую другую плоскость, параллельную данной.

Отсюда следует, что две пары сил, имеющие одинаковые моменты, эквивалентны друг другу (теорема об эквивалентности пар). Это следует из того, что указанными операциями, т. е. путем изменения плеча и перемещения пары в плоскости действия или переноса в параллельную плоскость, пары с одинаковыми моментами могут быть преобразованы одна в другую.

Теперь докажем теорему о сложении пар: система пар, действующих на абсолютно твердое тело, эквивалентна одной паре с моментом, равным геометрической сумме моментов слагаемых пар.

Рассмотрим сначала две пары с моментами лежащие в плоскостях (рис. 35). Возьмем на линии пересечения плоскостей отрезок и изобразим пару с моментом силами а пару с моментом - силами (при этом, конечно, ).

Сложив силы, приложенные в точках А и В, убеждаемся, что пары действительно эквивалентны одной паре найдем момент М этой пары. Так как то или согласно формуле

Для двух пар теорема доказана; при этом очевидно, что доказательство сохранится и в случае, когда плоскости и II сливаются (слагаемые пары лежат в одной плоскости).

Если на тело действует система пар с моментами то последовательно применяя результат, полученный для двух пар, найдем, что данная система пар будет действительно эквивалентна одной паре с моментом

Просмотр: эта статья прочитана 24574 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Обзор

Какое-либо кинематическое состояние тел, имеющих точку или ось вращения, можно описать моментом силы, характеризующим вращательный эффект действия силы.

Момент силы относительно центра - это векторное произведение радиус - вектора точки приложения силы на вектор силы.

Плечо силы - кратчайшее расстояние от центра до линии действия силы (перпендикуляр из центра на линию действия силы).

Вектор направляется по правилу векторного произведения: момент силы относительно центра (точки) как вектор направлен перпендикулярно плоскости, в которой расположены сила и центр так, чтобы с его конца было видно, что сила пытается вращать тело вокруг центра против хода часовой стрелки.

Единицей измерения момента силы есть 1

Момент силы относительно центра в плоскости - алгебраическая величина, которая равняется произведению модуля силы на плечо относительно того же центра с учетом знака.

Знак момента силы зависит от направления, в котором сила пытается вращать вокруг центра:

  • против хода часовой стрелки -„−” (отрицательный)
  • по часовой стрелке -„+” (положительный);

Свойства момента силы относительно центра (точки ).

  1. Модуль момента силы относительно точки равняется удвоенной площади треугольнику построенного на векторах.
  2. Момент силы относительно точки не изменяется при перенесении силы вдоль ее линии действия, поскольку неизменным остается плечо силы.
  3. Момент силы относительно центра (точки) равняется нулю, если:
  • сила равняется нулю F = 0;
  • плечо силы h = 0, т.е. линия действия силы проходит через центр.

Теорема Вариньона (о моменте равнодействующей).

Момент равнодействующей плоской системы сходящихся сил относительно какого-либо центра равняется алгебраической сумме моментов составляющих сил системы относительно того же центра.


Теория пар сил

Сложение двух параллельных сил, направленных в одну сторону.

Равнодействующая системы двух параллельных сил направленных в одну сторону равняется по модулю сумме модулей составляющих сил, параллельна им и направлена в том же направлении.

Линия действия равнодействующей проходит между точками приложения составляющих на расстояниях от этих точек, обратно пропорциональных к силам

Сложение двух параллельных сил, направленных в разные стороны (случай сил разных по модулю)

Равнодействующая двух параллельных, неравных по модулю, противоположно направленных сил параллельна им и направлена в направлении большей силы и по модулю равняется разности составляющих сил.

Линия действия равнодействующей проходит за пределами отрезка (со стороны большей силы), соединяющего точки их приложения, и отстоит от них на расстояния, обратно пропорциональные силам.

Пара сил - система двух параллельных, равных по модулю и противоположных по направлению сил, приложенных к абсолютно твердому телу.

Плечо пары сил - расстояние между линиями действия сил пары, т.е. длина перпендикуляра, проведенного из произвольной точки линии действия одной из сил пары на линию действия второй силы.

Плоскость действия пары сил - это плоскость, в которой расположены линии действий сил пары.
Действие пары сил сводится к вращательному движению, которое определяется моментом пары.

Моментом пары называется вектор с такими признаками:

  • он перпендикулярен плоскости пары;
  • направлен в ту сторону, откуда вращение, которое осуществляет пара, видно против часовой стрелки;
  • его модуль равняется произведению модуля одной из сил пары на плечо пары с учетом знака

Знак момента пары сил:

  • „+” - вращение против часовой стрелки
  • „-„ - вращение по часовой стрелке

Момент пары сил равняется произведению модуля одной из сил пары на плечо пары.

Момент пары - свободный вектор - для него ни точка приложения, ни линия действия не обозначены, они могут быть произвольными.

Свойство момента пары сил: момент пары равняется моменту одной из сил относительно точки приложения второй силы.

Теоремы о паре сил

Теорема 1. Пара сил не имеет равнодействующей, т.е. пару сил нельзя заменить одной силой.

Теорема 2. Пара сил не является системой уравновешенных сил.

Следствие : пара сил, действующая на абсолютно твердое тело, старается вращать его.

Теорема 3. Сумма моментов сил пары относительно произвольного центра (точки) в пространстве является величиной неизменной и представляет собой вектор-момент этой пары.

Теорема 4. Сумма моментов сил, которые составляют пару, относительно произвольного центра в плоскости действия пары не зависит от центра и равняется произведению силы на плечо пары с учетом знака, т.е. самому моменту пары.

Теорема 5 - об эквивалентности пар. Пары сил, моменты которых равны численно и по знаку, являются эквивалентными. Т.е. пару сил можно заменить или уравновесить только другой эквивалентной парой сил.

Теорема 6 - об уравновешенности пары сил. Пара сил составляет уравновешенную систему сил тогда и только тогда, когда момент пары равняется нулю.

Теорема 7 - о возможностях перемещения пары сил в плоскости ее действия. Пара сил, полученная перемещениям пары в любое место в плоскости ее действия, эквивалентна предоставленной паре.

Теорема 8 - о добавлении пар сил в плоскости. Момент пары, эквивалентной предоставленной системе пар в плоскости, равняется алгебраической сумме моментов составляющих пар. Т.е. для сложения пар сил необходимо сложить их моменты.

Условия равновесия системы пар сил.

Пары сил в плоскости уравновешиваются в том случае, если алгебраическая сумма их моментов равняется нулю.

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении

Загрузка...
Top