В чем измеряется теплота. Видеоурок «Количество теплоты

Внутренняя энергия тела изменяется при совершении работы или теплопередаче. При явлении теплопередачи внутренняя энергия передается теплопроводностью, конвекцией или излучением.

Каждое тело при нагревании или охлаждении (при теплопередаче) получает или теряет какое-то количество энергии. Исходя из этого, принято это количество энергии назвать количеством теплоты.

Итак, количество теплоты - это та энергия, которую отдает или получает тело в процессе теплопередачи.

Какое количество теплоты необходимо для нагревания воды? На простом примере можно понять, что для нагревания разного количества воды потребуется разное количество теплоты. Допустим, возьмем две пробирки с 1 литром воды и с 2-мя литрами воды. В каком случае потребуется большее количество теплоты? Во втором, там, где в пробирке 2 литра воды. Вторая пробирка будет нагреваться дольше, если мы подогреваем их одинаковым источником огня.

Таким образом, количество теплоты зависит от массы тела. Чем больше масса, тем большее количество теплоты требуется для нагрева и, соответственно, на охлаждение тела требуется большее время.

От чего еще зависит количество теплоты? Естественно, от разности температур тел. Но это еще не все. Ведь если мы попытаемся нагреть воду или молоко, то нам потребуется разное количество времени. Т.е получается, что количество теплоты зависит от вещества, из которого состоит тело.

В итоге получается, что количество теплоты, которое нужно для нагревания или количество теплоты, которое выделяется при остывании тела, зависит от его массы, от изменения температуры и от вида вещества, из которого состоит тело.

В чем измеряется количество теплоты

За единицу количества теплоты принято считать 1 Джоуль . До появления единицы измерения энергии ученые считали количество теплоты калориями. Сокращенно эту единицу измерения принято писать - “Дж”

Калория - это количество теплоты, которое необходимо для того, чтобы нагреть 1 грамм воды на 1 градус Цельсия. Сокращенно единицу измерения калории принято писать - “кал”.

1 кал = 4,19 Дж.

Обратите внимание, что в этих единицах энергии принято отмечать пищевую ценность продуктов питания кДж и ккал.

1 ккал = 1000 кал.

1 кДж = 1000 Дж

1 ккал = 4190 Дж = 4,19 кДж

Что такое удельная теплоемкость

Каждое вещество в природе имеет свои свойства, и для нагрева каждого отдельного вещества требуется разное количество энергии, т.е. количества теплоты.

Удельная теплоемкость вещества - это величина, равная количеству теплоты, которое нужно передать телу с массой 1 килограмм, чтобы нагреть его на температуру 1 0 C

Удельная теплоемкость обозначается буквой c и имеет величину измерения Дж/кг*

Например, удельная теплоемкость воды равна 4200 Дж/кг* 0 C. То есть это то количество теплоты, которое нужно передать 1 кг воды, чтобы нагреть ее на 1 0 C

Следует помнить, что удельная теплоемкость веществ в разных агрегатных состояниях различна. То есть для нагревания льда на 1 0 C потребуется другое количество теплоты.

Как рассчитать количество теплоты для нагревания тела

Например, необходимо рассчитать количество теплоты, которое нужно потратить для того, чтобы нагреть 3 кг воды с температуры 15 0 С до температуры 85 0 С. Нам известна удельная теплоемкость воды, то есть количество энергии, которое нужно для того, чтобы нагреть 1 кг воды на 1 градус. То есть для того, чтобы узнать количество теплоты в нашем случае, нужно умножить удельную теплоемкость воды на 3 и на то количество градусов, на которое нужно увеличить температуры воды. Итак, это 4200*3*(85-15) = 882 000.

В скобках мы рассчитываем точное количество градусов, отнимая от конечного необходимого результата начальное

Итак, для того, чтобы нагреть 3 кг воды с 15 до 85 0 С, нам потребуется 882 000 Дж количества теплоты.

Количество теплоты обозначается буквой Q, формула для его расчета выглядит следующим образом:

Q=c*m*(t 2 -t 1).

Разбор и решение задач

Задача 1 . Какое количество теплоты потребуется для нагрева 0,5 кг воды с 20 до 50 0 С

Дано:

m = 0,5 кг.,

с = 4200 Дж/кг* 0 С,

t 1 = 20 0 С,

t 2 = 50 0 С.

Величину удельной теплоемкость мы определили из таблицы.

Решение:

2 -t 1 ).

Подставляем значения:

Q=4200*0,5*(50-20) = 63 000 Дж = 63 кДж.

Ответ: Q=63 кДж.

Задача 2. Какое количество теплоты потребуется для нагревания алюминиевого бруска массой 0,5 кг на 85 0 С?

Дано:

m = 0,5 кг.,

с = 920 Дж/кг* 0 С,

t 1 = 0 0 С,

t 2 = 85 0 С.

Решение:

количество теплоты определяется по формуле Q=c*m*(t 2 -t 1 ).

Подставляем значения:

Q=920*0,5*(85-0) = 39 100 Дж = 39,1 кДж.

Ответ: Q= 39,1 кДж.

О единицах количества теплоты. Единицу количества теплоты - «малую» калорию - мы определили выше как количество теплоты, которое требуется для повышения температуры воды на 1 К при атмосферном давлении. Но так как теплоемкость воды при разных температурах различна, необходимо условиться о той температуре, при которой выбирается этот одноградусный интервал.

В СССР принята так называемая двадцатиградусная калория, для которой принят интервал от 19,5 до 20,5°С. В некоторых странах применяется пятнадцатиградусная калория (интервал Первая из них равна Дж, вторая - Дж. Иногда применяется средняя калория, равная одной сотой количества тепла, необходимого для нагревания воды от до

Измерение количества теплоты. Для непосредственного измерения количества теплоты, отданного или полученного телом, служат специальные приборы - калориметры.

В наиболее простой своей форме калориметр представляет собой сосуд, заполненный веществом, теплоемкость которого хорошо известна, например водой (удельная теплоемкость

Измеряемое количество теплоты тем или иным путем передается калориметру, в результате чего изменяется его температура. Измерив это изменение температуры мы получим теплоту

где с - удельная теплоемкость вещества, заполняющего калориметр, его масса.

Необходимо учитывать, что теплота передается не только веществу калориметра, но и сосуду и различным устройствам, которые могут в нем помещаться. Поэтому перед измерением нужно определить так называемый тепловой эквивалент калориметра - количество теплоты, нагревающее «пустой» калориметр на один градус. Иногда эту поправку вводят добавлением к массе воды добавочной массы теплоемкость которой равна теплоемкости сосуда и других частей калориметра. Тогда можно считать, что тепло передается массе воды, равной Величина называется водяным эквивалентом калориметра.

Измерение теплоемкости. Калориметр служит также для измерения теплоемкости. В этом случае необходимо точно знать количество подведенного (или отведенного) тепла Если известно, то удельная теплоемкость вычисляется из равенства

где масса исследуемого тела, а изменение его температуры, вызванное теплотой

Тепло к телу подводится в калориметре, который должен быть устроен так, чтобы подводимое тепло передавалось только исследуемому телу (и, конечно, калориметру), но не терялось в окружающем пространстве. Между тем такие потери тепла в какой-то мере всегда происходят, и их учет является главной заботой при калориметрических измерениях.

Измерение теплоемкости газов затруднено тем, что из-за малой их плотности теплоемкость той массы газа, которая может быть помещена в калориметр, мала. При обычных температурах она может оказаться сравнимой с теплоемкостью пустого калориметра, что неизбежно понижает точность измерений. Это особенно относится к измерению теплоемкости при постоянном объеме При определении эту трудность можно обойти, если исследуемый газ заставить протекать (при постоянном давлении) через калориметр (см. ниже).

Измерение Едва ли не единственным методом непосредственного измерения теплоемкости газа при постоянном объеме является метод, предложенный Жоли (1889 г.). Схема этого метода представлена на рис. 41.

Калориметр состоит из камеры К, в которой на концах коромысла точных весов подвешены два одинаковых полых медных шара снабженных тарелками снизу и отражателями сверху. Один из шаров откачивается, другой наполняется исследуемым газом. Для того чтобы газ имел заметную теплоемкость, его вводят под значительным давлением Массу введенного газа определяют с помощью весов, восстанавливая гирями нарушенное введением газа равновесие.

После того как между шарами и камерой установится тепловое равновесие, в камеру впускают водяной пар (трубки для входа и выхода пара расположены на передней и задней стенках камеры и на рис. 41 не показаны). Пар конденсируется на обоих шарах, нагревая их, и стекает в тарелки. Но на сфере, заполненной газом, конденсируется больше жидкости, так как ее теплоемкость больше. Из-за избытка конденсата на одном из шаров равновесие шаров снова нарушится. Уравновесив весы, мы узнаем ту избыточную массу жидкости, которая сконденсировалась благодаря присутствию газа в шаре. Если эта избыточная масса воды равна то, умножив ее на теплоту конденсации воды найдем количество теплоты, которое пошло на нагревание газа от начальной температуры до температуры водяного пара Измерив эту разность термометром, получим:

где удельная теплоемкость - газа. Зная удельную теплоемкость мы найдем, что молярная теплоемкость

Измерение Мы уже упоминали, что для измерения теплоемкости при постоянном давлении исследуемый газ заставляют протекать через калориметр. Только таким путем можно обеспечить постоянство давления газа, несмотря на подвод тепла и нагревание, без которого нельзя измерять теплоемкость. В качестве примера такого метода приведем здесь описание классического опыта Реньо ( Схема аппарата представлена на рис. 42.

Исследуемый газ из резервуара А через кран пропускают через змеевик, помещенный в сосуде с маслом В, нагреваемым каким-нибудь источником тепла. Давление газа регулируется краном а его постоянство контролируется манометром Проходя длинный путь в змеевике, газ принимает температуру масла, которая измеряется термометром

Нагретый в змеевике газ проходит затем через водяной калориметр, охлаждаясь в нем до некоторой температуры измеряемой термометром и выходит наружу. Измерив давление газа в резервуаре А в начале и в конце опыта (для этого служит манометр мы узнаем массу прошедшего через аппарат газа.

Количество теплоты отданное газом калориметру, равно произведению водяного эквивалента калориметра на изменение его температуры где начальная температура калориметра.

Как мы уже знаем, внутренняя энергия тела может изменяться как при совершении работы, так и при помощи теплопередачи (не совершая работу). Главное различие между работой и количеством теплоты заключается в том, что работа определяет процесс преобразования внутренней энергии системы, который сопровождается трансформацией энергии из одного вида в другой.

В том случае, если изменение внутренней энергии протекает с помощью теплопередачи , переход энергии из одного тела в другое осуществляется за счет теплопроводности , излучения, либо конвекции .

Энергия, которую тело теряет или получает во время теплопередачи, называется количеством теплоты.

При вычислении количества теплоты, необходимо знать, какие величины влияют на него.

От двух одинаковых горелок будем нагревать два сосуда. В одном сосуде 1 кг воды, в другом – 2 кг. Температура воды в двух сосудах изначально одинакова. Мы можем видеть, что за одно и тоже время вода в одном из сосудов нагревается быстрее, хотя оба сосуда получают равное количество теплоты.

Таким образом, делаем вывод: чем больше масса данного тела, тем большее количество теплоты следует затратить, для того чтобы понизить, или повысить его температуру на такое же количество градусов.

Когда тело остывает, оно отдает соседним предметам тем большее количество теплоты, чем больше его масса.

Мы все знаем, что если нужно нагреть полный чайник воды до температуры 50°C, мы затратим меньше времени на это действие, чем для нагревания чайника с тем же объемом воды, но только до 100 °C. В случае номер один воде будет отдано меньшее количество теплоты, нежели во втором.

Таким образом, количество теплоты, требуемое для нагревания, напрямую зависит от того, на сколько градусов сможет нагреться тело. Можно сделать вывод: количество теплоты напрямую зависит от разности температур тела.

Но возможно ли определить количество теплоты, требуемой не для нагревания воды, а какого-нибудь другого вещества, допустим, масла, свинца или железа.

Наполним один сосуд водой, а другой наполним растительным маслом. Массы воды и масла равные. Оба сосуда будем равномерно подогревать на одинаковых горелках. Начнем опыт при равной начальной температуре растительного масла и воды. Через пять минут, измерив температуры нагревшихся масла и воды, мы заметим, что температура масла намного выше температуры воды, хотя обе жидкости получали одинаковое количество тепла.

Напрашивается очевидный вывод: при нагревании равных масс масла и воды при одинаковой температуре нужно разное количество теплоты.

И мы тут же делаем еще одни вывод: количество теплоты, которое требуется для нагревания тела, напрямую зависит от вещества, из которого состоит само тело (рода вещества).

Таким образом, количество теплоты, нужное для нагревания тела (либо выделяемое при остывании), напрямую зависит от массы данного тела, вариативности его температуры, а также рода вещества.

Количество теплоты обозначают символом Q. Как и другие различные виды энергии, количество теплоты измеряется в джоулях (Дж) либо в килоджоулях (кДж).

1 кДж = 1000 Дж

Однако история показывает, что ученые стали измерять количество теплоты задолго того, как в физике появилось такое понятие как энергия. В то время, была выведена специальная единица для измерения количества теплоты – калория (кал) либо килокалория (ккал). Слово имеет латинские корни, калор – жара.

1 ккал = 1000 кал

Калория – это то количество теплоты, которое нужно для нагревания 1 г воды на 1°C

1 кал = 4,19 Дж ≈ 4,2 Дж

1 ккал = 4190 Дж ≈ 4200 Дж ≈ 4,2 кДж

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

СООТНОШЕНИЯ МЕЖДУ ЕДИНИЦАМИ ИЗМЕРЕНИЯ ЭНЕРГИИ

Таблицы пересчета физических величин.

Энергия, тепло, работа

Пересчет

кВт ч

кгс м

ккал

1 кВт ч

1 кгс м

1 ккал

Давление

Пересчет

Па
(Паскаль)

Бар
(Бар)

мм рт. ст.
(миллиметр ртутного столба)

мм вод. ст.
(миллиметр водяного столба)

кгс/см 2
(техническая атмосфера)

атм
(физическая атмосфера)

1 бар

1 мм рт. ст.

1 мм вод. ст.

1 кгс/см 2

1 атм

Давление - это физическая величина, равная отношению модуля силы, действующей перпендикулярно поверхности, к площади это поверхности. Единица давления - паскаль (Па), равный давлению, производимому силой в 1 ньютон на площадь в 1 квадратный метр. Все жидкости и газы передают производимое на них давление по всем направлениям (закон Паскаля).
Все тела, находящиеся на земной поверхности, испытывают со всех сторон одинаковое давление земной атмосферы - атмосферное давление. В каждой точке атмосферы это давление равно весу вышележащего столба воздуха; с высотой убывает. Среднее атмосферное давление на уровне моря эквивалентно давлению 760 мм рт. ст. (1013,25 гПа). Кроме атмосферного, различают абсолютное и избыточное давления. Абсолютным называют полное давление с учетом давления атмосферы, отсчитываемое от абсолютного нуля. Избыточным называют давление сверх атмосферного, равное разности между абсолютным и атмосферным давлением. Избыточное давление отсчитывается от условного нуля, за который принимается атмосферное давление. Абсолютное давление, меньшее, чем атмосферное, называют разрежением или вакуумом. Другими словами, вакуум равен разности между атмосферным и абсолютным давлениями.
Для измерения избыточного давления газа, пара и жидкости применяются манометры; небольших давлений и вакуума - напоромеры и тягомеры; вакуума - вакуумметры; давления и вакуума - тягонапоромеры и мановакуумметры.

Температура

Температура - это физическая величина, характеризующая степень нагретости тел. Она представляет собой меру средней кинетической энергии поступательного движения молекул. Чем больше средняя скорость движения молекул, тем выше температура тела.
Понятие температуры связано также со способностью тел с более высокой температурой передавать свою теплоту телам с более низкой температурой до тех пор, пока эти температуры не сравняются. Одновременно с изменением температуры тел могут меняться их физические свойства.
Приборы для измерения температуры подразделяют в зависимости от того, какой метод положен в основу их конструкции: контактный (когда измерительный прибор соприкасается с измеряемой средой), или неконтактный. К приборам, основанным на контактном методе измерений, относят жидкостные стеклянные термометры, манометрические термометры, термоэлектрические термометры (термопары) и термопреобразователи сопротивления. К приборам, основанным на неконтактном методе, относят пирометры излучения.

Соотношение единиц измерения

Длина

1 дюйм

1 миллиметр

0,03937 дюйма

1 фут

1 сантиметр

0,3937 дюйма

1 ярд

1 дециметр

0,3281 фута

1 род

1 метр

3,281 фута

1 чейн

1 метр

1,094 ярда

1 фурлонг

10,94 ярда

1 миля

1 километр

0,6214 мили

1 морская миля

1 километр

0,539 морской мили

Площадь

1 кв. дюйм

6,4516 кв. см

1 кв. сантиметр

0,1550 кв. дюйма

1 кв. фут

929,03 кв. см

1 кв. метр

1,550 кв. дюйма

1 кв. ярд

0,8361 кв. м

119,60 кв. ярда

1 акр

4046,9 кв. м

1 гектар

2,4711 акра

1 кв. миля

1 кв. километр

0,3861 кв. мили

Объем

1 куб. дюйм

16,387 куб. см

1 куб. сантиметр

0,061 куб. дюйма

1 куб. фут

0,0283 куб. м

1 куб. дециметр

0,035 куб. фута

1 куб. ярд

0,7646 куб. м

1 куб. метр

1,308 куб. ярда

Меры сыпучих тел и жидкостей

Таблицы перевода физических величин

Таблицы позволяют осуществлять перевод физических величин - метрических, СИ, используемых в США и Великобритании. Во всех таблицах используется умножение.

ДЛИНА

Табл. 1. Метрическая система, соотношение единиц измерения длины

Пересчет

ангстрем
(A)

нанометр
(nm, нм)

микрон
(mkm, мкм)

миллиметр
(mm, мм)

сантиметр
(cm, см)

дециметр
(dm, дм)

метр
(m, м)

километр
(km, км)

метр (m, м)

Табл. 2. Британская и Американская системы, соотношение единиц измерения длины

Пересчет

лига, лье

миля (ml)

род (rd)

ярд (yd)

фут (ft)

линк (link)

дюйм (in)

линия (line)

миля (mi)

Табл. 3. Перевод единиц измерения длины из Британско - Американской системы в Метрическую

Пересчет

ангстрем
(A)

нанометр
(nm, нм)

микрон
(mkm, мкм)

миллиметр
(mm, мм)

сантиметр
(cm, см)

дециметр
(dm, дм)

метр
(m, м)

километр
(km, км)

лига, лье

миля (mi)

род (rd)

ярд (yd)

фут (ft)

линк (link)

дюйм (in)

линия (line)

ПЛОЩАДЬ

Табл. 4. Перевод единиц измерения площади

Пересчет

дюйм 2

фут 2

ярд 2

миля 2

дюйм 2

фут 2

ярд 2

миля 2

МАССА

Табл. 5. Перевод единиц измерения массы

Пересчет

тонна

фунт

Англ. cwt

Англ.тонна

Амер. cwt

Амер. тонна

тонна

фунт

Англ. cwt

Англ.тонна

Амер. cwt

Амер. тонна

ОБЪЕМ

Табл. 6. Перевод единиц измерения объема

Пересчет

литр (дм 3)

дюйм 3

фут 3

ярд 3

UK пинта

UK галлон

US пинта

US галлон

литр (дм 3)

дюйм 3

фут 3

ярд 3 764555 0.764555 764.555 46656 27 1 1345.429 168.1784 1615.793 201.974
UK пинта 568.261 0.0005683 0.568261 34.6774 0.020068 0.000743 1 0.125 1.20095 0.150119
UK галлон 4546.09 0.0045461 4.54609 277.42 0.160544 0.005946 8 1 9.6076 1.20095
US пинта 473.176 0.0004732 0.473176 28.875 0.01671 0.000619 0.832674 0.104084 1 0.125
US галлон 3785.41 0.0037854 3.785411 231 0.133681 0.004951 6.661392 0.832674 8 1

ДАВЛЕНИЕ

Табл. 7. Пересчте единиц измерения давления

Пересчет

мм рт.ст.

мбар

паскаль

дюйм вод.ст.

дюйм рт.ст.

мм рт.ст.

мбар

паскаль

Как мы уже знаем, внутренняя энергия тела может изменяться как при совершении работы, так и при помощи теплопередачи (не совершая работу). Главное различие между работой и количеством теплоты заключается в том, что работа определяет процесс преобразования внутренней энергии системы, который сопровождается трансформацией энергии из одного вида в другой.

В том случае, если изменение внутренней энергии протекает с помощью теплопередачи , переход энергии из одного тела в другое осуществляется за счет теплопроводности , излучения, либо конвекции .

Энергия, которую тело теряет или получает во время теплопередачи, называется количеством теплоты.

При вычислении количества теплоты, необходимо знать, какие величины влияют на него.

От двух одинаковых горелок будем нагревать два сосуда. В одном сосуде 1 кг воды, в другом – 2 кг. Температура воды в двух сосудах изначально одинакова. Мы можем видеть, что за одно и тоже время вода в одном из сосудов нагревается быстрее, хотя оба сосуда получают равное количество теплоты.

Таким образом, делаем вывод: чем больше масса данного тела, тем большее количество теплоты следует затратить, для того чтобы понизить, или повысить его температуру на такое же количество градусов.

Когда тело остывает, оно отдает соседним предметам тем большее количество теплоты, чем больше его масса.

Мы все знаем, что если нужно нагреть полный чайник воды до температуры 50°C, мы затратим меньше времени на это действие, чем для нагревания чайника с тем же объемом воды, но только до 100 °C. В случае номер один воде будет отдано меньшее количество теплоты, нежели во втором.

Таким образом, количество теплоты, требуемое для нагревания, напрямую зависит от того, на сколько градусов сможет нагреться тело. Можно сделать вывод: количество теплоты напрямую зависит от разности температур тела.

Но возможно ли определить количество теплоты, требуемой не для нагревания воды, а какого-нибудь другого вещества, допустим, масла, свинца или железа.

Наполним один сосуд водой, а другой наполним растительным маслом. Массы воды и масла равные. Оба сосуда будем равномерно подогревать на одинаковых горелках. Начнем опыт при равной начальной температуре растительного масла и воды. Через пять минут, измерив температуры нагревшихся масла и воды, мы заметим, что температура масла намного выше температуры воды, хотя обе жидкости получали одинаковое количество тепла.

Напрашивается очевидный вывод: при нагревании равных масс масла и воды при одинаковой температуре нужно разное количество теплоты.

И мы тут же делаем еще одни вывод: количество теплоты, которое требуется для нагревания тела, напрямую зависит от вещества, из которого состоит само тело (рода вещества).

Таким образом, количество теплоты, нужное для нагревания тела (либо выделяемое при остывании), напрямую зависит от массы данного тела, вариативности его температуры, а также рода вещества.

Количество теплоты обозначают символом Q. Как и другие различные виды энергии, количество теплоты измеряется в джоулях (Дж) либо в килоджоулях (кДж).

1 кДж = 1000 Дж

Однако история показывает, что ученые стали измерять количество теплоты задолго того, как в физике появилось такое понятие как энергия. В то время, была выведена специальная единица для измерения количества теплоты – калория (кал) либо килокалория (ккал). Слово имеет латинские корни, калор – жара.

1 ккал = 1000 кал

Калория – это то количество теплоты, которое нужно для нагревания 1 г воды на 1°C

1 кал = 4,19 Дж ≈ 4,2 Дж

1 ккал = 4190 Дж ≈ 4200 Дж ≈ 4,2 кДж

Остались вопросы? Не знаете, как сделать домашнее задание?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Загрузка...
Top