Аппроксимация линейной функции. Метод аппроксимации в Microsoft Excel

Аппроксимация опытных данных – это метод, основанный на замене экспериментально полученных данных аналитической функцией наиболее близко проходящей или совпадающей в узловых точках с исходными значениями (данными полученными в ходе опыта или эксперимента). В настоящее время существует два способа определения аналитической функции:

С помощью построения интерполяционного многочлена n-степени, который проходит непосредственно через все точки заданного массива данных. В данном случае аппроксимирующая функция представляется в виде: интерполяционного многочлена в форме Лагранжа или интерполяционного многочлена в форме Ньютона.

С помощью построения аппроксимирующего многочлена n-степени, который проходит в ближайшей близости от точек из заданного массива данных. Таким образом, аппроксимирующая функция сглаживает все случайные помехи (или погрешности), которые могут возникать при выполнении эксперимента: измеряемые значения в ходе опыта зависят от случайных факторов, которые колеблются по своим собственным случайным законам (погрешности измерений или приборов, неточность или ошибки опыта). В данном случае аппроксимирующая функция определяется по методу наименьших квадратов.

Метод наименьших квадратов (в англоязычной литературе Ordinary Least Squares, OLS) - математический метод, основанный на определении аппроксимирующей функции, которая строится в ближайшей близости от точек из заданного массива экспериментальных данных. Близость исходной и аппроксимирующей функции F(x) определяется числовой мерой, а именно: сумма квадратов отклонений экспериментальных данных от аппроксимирующей кривой F(x) должна быть наименьшей.

Аппроксимирующая кривая, построенная по методу наименьших квадратов

Метод наименьших квадратов используется:

Для решения переопределенных систем уравнений, когда количество уравнений превышает количество неизвестных;

Для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений;

Для аппроксимации точечных значений некоторой аппроксимирующей функцией.

Аппроксимирующая функция по методу наименьших квадратов определяется из условия минимума суммы квадратов отклонений расчетной аппроксимирующей функции от заданного массива экспериментальных данных. Данный критерий метода наименьших квадратов записывается в виде следующего выражения:

Значения расчетной аппроксимирующей функции в узловых точках ,

Заданный массив экспериментальных данных в узловых точках .

Квадратичный критерий обладает рядом "хороших" свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

В зависимости от условий задачи аппроксимирующая функция представляет собой многочлен степени m

Степень аппроксимирующей функции не зависит от числа узловых точек, но ее размерность должна быть всегда меньше размерности (количества точек) заданного массива экспериментальных данных.

∙ В случае если степень аппроксимирующей функции m=1, то мы аппроксимируем табличную функцию прямой линией (линейная регрессия).

∙ В случае если степень аппроксимирующей функции m=2, то мы аппроксимируем табличную функцию квадратичной параболой (квадратичная аппроксимация).

∙ В случае если степень аппроксимирующей функции m=3, то мы аппроксимируем табличную функцию кубической параболой (кубическая аппроксимация).

В общем случае, когда требуется построить аппроксимирующий многочлен степени m для заданных табличных значений, условие минимума суммы квадратов отклонений по всем узловым точкам переписывается в следующем виде:

- неизвестные коэффициенты аппроксимирующего многочлена степени m;

Количество заданных табличных значений.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным . В результате получим следующую систему уравнений:

Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения. В результате полученная система линейных алгебраических выражений будет записываться в следующем виде:

Данная система линейных алгебраических выражений может быть переписана в матричном виде:

В результате была получена система линейных уравнений размерностью m+1, которая состоит из m+1 неизвестных. Данная система может быть решена с помощью любого метода решения линейных алгебраических уравнений (например, методом Гаусса). В результате решения будут найдены неизвестные параметры аппроксимирующей функции, обеспечивающие минимальную сумму квадратов отклонений аппроксимирующей функции от исходных данных, т.е. наилучшее возможное квадратичное приближение. Следует помнить, что при изменении даже одного значения исходных данных все коэффициенты изменят свои значения, так как они полностью определяются исходными данными.

Аппроксимация исходных данных линейной зависимостью

(линейная регрессия)

В качестве примера, рассмотрим методику определения аппроксимирующей функции, которая задана в виде линейной зависимости. В соответствии с методом наименьших квадратов условие минимума суммы квадратов отклонений записывается в следующем виде:

Координаты узловых точек таблицы;

Неизвестные коэффициенты аппроксимирующей функции, которая задана в виде линейной зависимости.

Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным. В результате получаем следующую систему уравнений:

Преобразуем полученную линейную систему уравнений.

Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом (метод Крамера):

Данные коэффициенты обеспечивают построение линейной аппроксимирующей функции в соответствии с критерием минимизации суммы квадратов аппроксимирующей функции от заданных табличных значений (экспериментальные данные).

Алгоритм реализации метода наименьших квадратов

1. Начальные данные:

Задан массив экспериментальных данных с количеством измерений N

Задана степень аппроксимирующего многочлена (m)

2. Алгоритм вычисления:

2.1. Определяются коэффициенты для построения системы уравнений размерностью

Коэффициенты системы уравнений (левая часть уравнения)

- индекс номера столбца квадратной матрицы системы уравнений

Свободные члены системы линейных уравнений (правая часть уравнения)

- индекс номера строки квадратной матрицы системы уравнений

2.2. Формирование системы линейных уравнений размерностью .

2.3. Решение системы линейных уравнений с целью определения неизвестных коэффициентов аппроксимирующего многочлена степени m.

2.4.Определение суммы квадратов отклонений аппроксимирующего многочлена от исходных значений по всем узловым точкам

Найденное значение суммы квадратов отклонений является минимально-возможным.

Аппроксимация с помощью других функций

Следует отметить, что при аппроксимации исходных данных в соответствии с методом наименьших квадратов в качестве аппроксимирующей функции иногда используют логарифмическую функцию, экспоненциальную функцию и степенную функцию.

Логарифмическая аппроксимация

Рассмотрим случай, когда аппроксимирующая функция задана логарифмической функцией вида:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ МИНЕРАЛЬНО-СЫРЬЕВОЙ УНИВЕРСИТЕТ

«ГОРНЫЙ»

Кафедра АТПП

Математические методы обработки данных

Лабораторная работа № 2

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ПО МЕТОДУ ГАИМЕНЬШИХ КВАДРАТОВ

Выполнил: студент гр.АПМ-13 ____ __________ / Озеров Б.А. /

(подпись) (Ф.И.О.)

Проверил: доцент ­­­­­___________ / Иванов П.В. /

(подпись) (Ф.И.О.)

Санкт-Петербург

Цель работы: изучение практических приемов нахождения коэффициентов линейных и нелинейных регрессионных зависимостей и оценки точности аппроксимации с использованием программной среды MathCad.

Линейная аппроксимация.

Дано:

Способы аппроксимации:

line ;

2) решение системы линейных уравнений с помощью конструкции Given – Find .

Выполнение задания:

1) решение системы линейных уравнений, используя функцию line.

Делаем матрицу данных нам величин, а именно x и y. Функция line просто вычисляет быстрым способом, находит не известные коэффициенты. Получаем искомые коэффициенты. Запись в программе MathCad представлена на рис.1

рис.1 решение системы линейных уравнений, используя функцию line

в программе MathCad

2) Конструкция Given – Find использует расчетную методичку, основанную на поиске корня вблизи точки начального приближения.

В блоке Given записывается система уравнений (неравенств), подлежащих решению. Система уравнений должна быть записана после или правее Given. Перед словом Given необходимо указывать начальные приближения для всех переменных. Признаком окончания системы служит Find.

Сначала задаем матрицу данных нам величин, а именно x и y. И задаем начальное приближение А и В, от которых будем начинать искать значения линейного уравнения Ах+В=y. Затем вводим служебное слово Given и после него записываем уравнение, используя знак жирное равно. И в конце написать функцию Find с неизвестными переменными в качестве параметра. Получаем искомые коэффициенты. Запись в программе MathCad представлена на рис.2

Используя метод наименьших квадратов, мы составляем уравнения, которые записываем после слова Given:

рис.2 решение системы линейных уравнений с помощью конструкции Given – Find

в программе MathCad

Вычислили коэффициенты аппроксимирующего полинома линейного уравнения двумя разными способами. Они совпали: (а=А, b=B)

Среди различных методов прогнозирования нельзя не выделить аппроксимацию. С её помощью можно производить приблизительные подсчеты и вычислять планируемые показатели, путем замены исходных объектов на более простые. В Экселе тоже существует возможность использования данного метода для прогнозирования и анализа. Давайте рассмотрим, как этот метод можно применить в указанной программе встроенными инструментами.

Наименование данного метода происходит от латинского слова proxima – «ближайшая» Именно приближение путем упрощения и сглаживания известных показателей, выстраивание их в тенденцию и является его основой. Но данный метод можно использовать не только для прогнозирования, но и для исследования уже имеющихся результатов. Ведь аппроксимация является, по сути, упрощением исходных данных, а упрощенный вариант исследовать легче.

Главный инструмент, с помощью которого проводится сглаживания в Excel – это построение линии тренда. Суть состоит в том, что на основе уже имеющихся показателей достраивается график функции на будущие периоды. Основное предназначение линии тренда, как не трудно догадаться, это составление прогнозов или выявление общей тенденции.

Но она может быть построена с применением одного из пяти видов аппроксимации:

  • Линейной;
  • Экспоненциальной;
  • Логарифмической;
  • Полиномиальной;
  • Степенной.

Рассмотрим каждый из вариантов более подробно в отдельности.

Способ 1: линейное сглаживание

Прежде всего, давайте рассмотрим самый простой вариант аппроксимации, а именно с помощью линейной функции. На нем мы остановимся подробнее всего, так как изложим общие моменты характерные и для других способов, а именно построение графика и некоторые другие нюансы, на которых при рассмотрении последующих вариантов уже останавливаться не будем.

Прежде всего, построим график, на основании которого будем проводить процедуру сглаживания. Для построения графика возьмем таблицу, в которой помесячно указана себестоимость единицы продукции, производимой предприятием, и соответствующая прибыль в данном периоде. Графическая функция, которую мы построим, будет отображать зависимость увеличения прибыли от уменьшения себестоимости продукции.


Сглаживание, которое используется в данном случае, описывается следующей формулой:

В конкретно нашем случае формула принимает такой вид:

y=-0,1156x+72,255

Величина достоверности аппроксимации у нас равна 0,9418 , что является довольно приемлемым итогом, характеризующим сглаживание, как достоверное.

Способ 2: экспоненциальная аппроксимация

Теперь давайте рассмотрим экспоненциальный тип аппроксимации в Эксель.


Общий вид функции сглаживания при этом такой:

где e – это основание натурального логарифма.

В конкретно нашем случае формула приняла следующую форму:

y=6282,7*e^(-0,012*x)

Способ 3: логарифмическое сглаживание

Теперь настала очередь рассмотреть метод логарифмической аппроксимации.


В общем виде формула сглаживания выглядит так:

где ln – это величина натурального логарифма. Отсюда и наименование метода.

В нашем случае формула принимает следующий вид:

y=-62,81ln(x)+404,96

Способ 4: полиномиальное сглаживание

Настал черед рассмотреть метод полиномиального сглаживания.


Формула, которая описывает данный тип сглаживания, приняла следующий вид:

y=8E-08x^6-0,0003x^5+0,3725x^4-269,33x^3+109525x^2-2E+07x+2E+09

Способ 5: степенное сглаживание

В завершении рассмотрим метод степенной аппроксимации в Excel.


Данный способ эффективно используется в случаях интенсивного изменения данных функции. Важно учесть, что этот вариант применим только при условии, что функция и аргумент не принимают отрицательных или нулевых значений.

Общая формула, описывающая данный метод имеет такой вид:

В конкретно нашем случае она выглядит так:

y = 6E+18x^(-6,512)

Как видим, при использовании конкретных данных, которые мы применяли для примера, наибольший уровень достоверности показал метод полиномиальной аппроксимации с полиномом в шестой степени (0,9844 ), наименьший уровень достоверности у линейного метода (0,9418 ). Но это совсем не значит, что такая же тенденция будет при использовании других примеров. Нет, уровень эффективности у приведенных выше методов может значительно отличаться, в зависимости от конкретного вида функции, для которой будет строиться линия тренда. Поэтому, если для этой функции выбранный метод наиболее эффективен, то это совсем не означает, что он также будет оптимальным и в другой ситуации.

Если вы пока не можете сразу определить, основываясь на вышеприведенных рекомендациях, какой вид аппроксимации подойдет конкретно в вашем случае, то есть смысл попробовать все методы. После построения линии тренда и просмотра её уровня достоверности можно будет выбрать оптимальный вариант.

    Линейная аппроксимация - (Linear approximation) – см. Аппроксимация, Линейность в экономике …

    линейная аппроксимация - линейное приближение Аппроксимацией называется приближенное выражение каких либо величин или объектов через другие более простые величины или объекты. При линейной аппроксимации приближение строится с помощью линейных функций. ] Тематики защита информации EN linear approximation of block ciphers … Справочник технического переводчика

    кусочно-линейная аппроксимация функции - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN piecewise linear approximation … Справочник технического переводчика

    Аппроксимация - «замена одних математических объектов другими, в том или ином смысле близкими к исходным» ; в частности приближенное выражение сложной функции с помощью более простых. Например, при кусочно линейной А., непрерывная… … Экономико-математический словарь

    аппроксимация - «Замена одних математических объектов другими, в том или ином смысле близкими к исходным» . В частности — приближенное выражение сложной функции с помощью более простых. Например, при кусочно линейной А., непрерывная… … Справочник технического переводчика

    Группа линейных преобразований векторного пространства Vконечной размерности n над нек рым телом К. Выбор базиса в пространстве Vреализует Л. г. как группу невырожденных квадратных матриц степени пнад телом К. Тем самым устанавливается изоморфизм … Математическая энциклопедия

    Численные методы решения методы, позволяющие получить решение Л. к. з. в виде таблицы его приближенных значений в точках сетки, не используя предварительной информации об ожидаемом виде решения. Для теории этих методов типично предположение о том … Математическая энциклопедия

    Метод решения класса задач статистич. оценивания, в к ром новое значение оценки представляет собой поправку к уже имеющейся оценке, основанную на новом наблюдении. Первая процедура С. а. была предложена в 1951 X. Роббинсом(Н. Robbins) и С. Монро… … Математическая энциклопедия

Введение

Основным инструментом для решения сложных математических задач в настоящее время являются численные методы, позволяющие свести решение задачи к выполнению конечного числа арифметических действий над числами; при этом результаты получаются в виде числовых значений. Численные методы позволяют получить лишь решение задачи с конкретными значениями параметров и исходных данных.

Многие численные методы разработаны давно, однако при вычислениях вручную они могли использоваться лишь для решения не слишком трудоемких задач. С появлением компьютеров начался период бурного развития численных методов и их внедрения в практику. Только вычислительной машине под силу выполнить за короткое время объем вычислений в миллиарды, триллионы и более операций, необходимых для решения многих современных задач.

Численный метод наряду с возможностью получения результата за приемлемое время должен обладать и ещё одним важным качеством - не вносить в вычислительный процесс значительных погрешностей.

Аппроксимация

При эмпирическом (экспериментальном) изучении функциональной зависимости одной величины от другой производят ряд измерений функции у от каждого конкретного значения аргумента х. Результаты измерений могут быть представлены графически либо в виде таблицы.

Задача заключается в аналитическом представлении функциональной зависимости y от x, описывающей результат этих экспериментов. Особенность задачи - погрешность, ошибки. В ходе эксперимента измеренные значения у i содержат случайные ошибки и ошибки измерений. Задача сводится к тому, что бы получить такую функциональную зависимость, которая складывала все ошибки - сглаживала.

Аппроксимирующую функцию y(x) выбирают из ряда стандартных и простых. Обозначим функциональную зависимость f (x i ; a 1 ; …a n). (1)

Здесь параметры a и n невозможно определить точно, они содержат в себе ошибки. Чтобы получить несмещённые и состоятельные оценки параметров a 1 ; …a n - можно воспользоваться методом наименьших квадратов.

Метод наименьших квадратов позволяет получить несмещенные несостоятельные оценки параметра a 1 ; …a n . При этом предполагается, что измерения смещения функции произведены независимо друг от друга и ошибки подчиняются закону нормального распределения вероятности.

Суть метода. Если все измерения уi ... yn произведены с одинаковой точностью, то оценки параметров a 1 ; …a n определяются из условия, чтобы сумма квадратов отклонения у i была наименьшей.

у i = у i - f (x i ; a 1 ; …a n)

S=(у i - f (x i ; a 1 ; …a n)) 2

Если параметры a 1 ; …a n входят в аппроксимирующую функцию (1) линейно, то система уравнений будет тоже линейной; в тех случаях, когда они не линейны, необходимо преобразовать функциональную зависимость.

Аппроксимация линейной функции

Задача сводится к следующему. Получен ряд значений функции y 1 , y 2 , …,y n при соответствующих значениях аргумента x 1 , x 2 , …,x n . Необходимо найти значения a и b выражения y=ax+b.

S=? (yi-f (a*xi+b)) ^2

dS/da=2*?(yi-a*xi-b)*xi

dS/db=2*?(yi-a*xi-bi)

Раскроем знак суммы:

Yi*xi-a*?xi^2-b*?xi=0

Переобозначим суммы,

где значения A, B, C, D известны из таблицы.

Определив значения a и b, мы решим поставленную задачу определения параметров выражения y=ax+b.

y: -10.29, -6.64, -6.70, -4.31, -3.26, -2.20, -0.08, 1.50, 3.81, 3.62

График полученной функции:

Аппроксимация степенной функции

Задача: Задача сводится к следующему. Получен ряд значений функции y 1 , y 2 , …,y n при соответствующих значениях аргумента x 1 , x 2 , …,x n . Необходимо найти значения a и b выражения y=ax b . Для этого прологарифмируем это выражение:

ln y = b ln x + ln a

и произведем замены:

Тогда получим знакомое выражение для прямой линии:

Выражение минимизируемой функции для этого случая примет вид:

S=? (yi-f(a*xi+b))^2

Решаем систему методом Крамера и находим параметры a и b

Данные: х: 2,4,6,8,10,12,14,16,18,20

у: 0.41, 0.19, 0.10, 0.07, 0.05, 0.04, 0.03, 0.02, 0.02, 0.02

График полученной функции:

Аппроксимация параболической функции

Задача: Задача сводится к следующему. Получен ряд значений функции y 1 , y 2 , …,y n при соответствующих значениях аргумента x 1 , x 2 , …,x n . Необходимо найти значения a и b и с выражения y=ax 2 +bx+c.

Выражение минимизируемой функции для этого случая примет вид:

S=? (yi-f(a*xi^2+b*xi+c))^2

Отыскание a и b сводится к решению системы уравнений:

Дифференцируем, чтобы найти минимумы:

dS/da=?(yi-a*xi^2-b*xi+c)*xi^2=0

dS/db=?(yi-a*xi^2-b*xi+c)*xi=0

dS/dc=?(yi-a*xi^2-b*xi+c)=0

Раскроем знак суммы:

Yi*xi^2-a*?xi^4-b*?xi^3-c*?xi^2=0

Yi-a*?xi^2-b*?xi*yi-c*N=0

Переобозначим суммы:

G - aE - bD - cC = 0

F - aD - bC - cA = 0

B - aC - bA - cN = 0

где A, B, C, D, E, F, G известны из таблицы.

Решаем систему методом Крамера и находим параметры a и b

Определив значения a и b и c, мы решим поставленную задачу определения параметров выражения y=ax 2 +bx+c.

Данные: х: 1,2,3,4,5,6,7,8,9,10

Загрузка...
Top