Исследование функции и построение графика с помощью производной. Полное исследование функции и построение графика

Полное исследование функций и построение их графиков удобно выполнять по следующей схеме:

1) найти область определения функции;

2) выяснить, не является ли функция чётной или нечётной, периодической;

3) исследовать непрерывность, найти точки разрыва и выяснить характер разрывов;

4) найти асимптоты графика функции;

5) исследовать монотонность функции и найти ее экстремумы;

6) найти точки перегиба, установить интервалы выпуклости и вогнутости графика функции;

7) обозначить дополнительные точки графика функции, например, точки его пересечения с осями координат.

Результат каждого пункта должен сразу отражаться на графике и согласовываться с результатами исследования по предыдущим пунктам.

Пример 1 .

Провести полное исследование функции и построить график .

1. Функция определена в интервалах хÎ (-¥; 1) È (-1; +¥).

2. Функция не может быть четной или нечетной, т.к. ее область определения не является симметричной относительно 0. Следовательно, данная функция общего вида, т.е. свойством четности не обладает. Также функция не является периодической.

Напомним определения:

Функция называется четной , если выполняются два условия:

a) ее область определения симметрична относительно нуля,

b) для всех значений х из области определения выполняется равенство .

График четной функции имеет осевую симметрию относительно оси OY .

Функция называется нечетной , если

a) ее область определения функции симметрична относительно нуля,

b) при "х из области определения.

График нечетной функции имеет центральную симметрию относительно начала координат.

Функция называется периодической , если существует число Т > 0 , такое что выполняется равенство для "х из области определения.

Число Т называется периодом функции , а ее график достаточно построить на любом промежутке длиной Т , а затем периодически продолжить на всю область определения.

3. Функция является непрерывной при всех хÎ (-¥; -1) È (-1; +¥).

Данная функция является элементарной, которая образована делением двух непрерывных основных элементарных функций и . Поэтому, по свойствам непрерывных функций, данная функция непрерывна во всех точках, в которых она определена.

Точка х = -1 является точкой разрыва, т.к. в ней данная функция не определена. Чтобы определить характер (тип) разрыва, вычислим . Следовательно, при х = -1 функция имеет бесконечный разрыв (разрыв II рода).

4. Асимптоты графика функции.

Вертикальной асимптотой является прямая х = -1 (это следует из исследования разрыва функции).

Наклонные асимптоты ищем уравнением , где


Таким образом, - это уравнение наклонной асимптоты (при х® ±¥).

5. Монотонность и экстремумы функции определим с помощью ее первой производной:

Критические точки определяем из условий:

y max =y(-3)= .

6. Интервалы выпуклости и вогнутости графика функции, ее точки перегиба находим с помощью второй производной:

Подозрительные на перегиб точки определяем из условий:

Достаточные условия выпуклости, вогнутости и точек перегиба:

Точка О(0; 0) является точкой перегиба графика.

Часто результаты исследования функции с помощью первой и второй производной оформляют в виде общей таблицы, отражающей основные свойства графика функции:

x (-¥;-3) -3 (-3;-1) -1 (-1;0) (0;+¥)
+ - не существует + +
- - - не существует - +
возрастает, вогнута max Убывает, вогнута не существует возрастает, вогнута = 0 точка перегиба возрастает, выпукла

Все полученные результаты исследования функции отражаются ее графиком.

Пример 2 .

ООФ: хÎ (-¥; - ) È (- ; ) È ( ;+¥).

Функция является нечетной, так как ее область определения симметрична относительно нуля и для "х Î ООФ выполняется равенство:

Поэтому график функции имеет центральную симметрию относительно начала координат.

Функция является непрерывной при всех хÎ (-¥; - ) È (- ; ) È ( ; +¥), т.к. элементарная функция непрерывна на своей ООФ. Точки х=- и х= являются точками бесконечного разрыва, так как ,

Вертикальными асимптотами графика являются прямые х = - и х = .

Наклонные асимптоты: , где

= = 0 .

Это уравнение наклонной асимптоты.

Интервалы возрастания и убывания функции, ее экстремумы.

Необходимые условия экстремумов:

Þ х 1 = 0, х 2 = 3, х 3 = -3 - критические точки.

Достаточные условия монотонности и экстремумов:

y max =y(-3)= ;

y min =y(3)= .

Интервалы выпуклости, вогнутости графика функции и точки перегибов:

Точка х = 0 подозрительная на перегиб.

Достаточные условия:

Точка О(0; 0) является точкой перегиба.

Общую таблицу основных свойств графика для данной функции можно составить только для хÎ

Отметим точки на числовой оси, расставим знаки первой производной и отметим поведение функции:

Рисунок 1.

Функция возрастает на $\left(-\infty ;\frac{12-\sqrt{120} }{6} \right]$ и $\left[\frac{12+\sqrt{120} }{6} ;\infty \right)$, убывает на $\left[\frac{12-\sqrt{120} }{6} ;\frac{12+\sqrt{120} }{6} \right]$.

$x=\frac{12-\sqrt{120} }{6} $ - точка максимума; $y\left(\frac{12-\sqrt{120} }{6} \right)=1,172$

$x=\frac{12+\sqrt{120} }{6} $ - точка минимума; $y\left(\frac{12+\sqrt{120} }{6} \right)=-23,172$

7) Выпуклость, вогнутость графика:

\ \[\begin{array}{l} {y""=(3x^{2} -12x+2)"=6x-12} \\ {y""=0\Rightarrow 6x-12=0\Rightarrow x=2} \end{array}\]

Отметим точки на числовой оси, расставим знаки второй производной и отметим поведение графика функции:

Рисунок 2.

График направлен выпуклостью вверх на $(-\infty ;2]$, вниз на $

8) График функции:

Рисунок 3.

Сегодня мы предлагаем вместе с нами исследовать и построить график функции. После внимательного изучения данной статьи вам не придется долго потеть над выполнением подобного рода задания. Исследовать и построить график функции нелегко, работа объемная, требующая максимального внимания и точности вычислений. Для облегчения восприятия материала мы будем поэтапно изучать одну и ту же функцию, объясним все наши действия и вычисления. Добро пожаловать в удивительный и увлекательный мир математики! Поехали!

Область определения

Для того чтобы исследовать и построить график функции, необходимо знать несколько определений. Функция является одним из основных (базовых) понятий в математике. Она отражает зависимость между несколькими переменными (двумя, тремя и более) при изменениях. Так же функция показывает зависимость множеств.

Представьте, что у нас есть две переменные, которые имеют определенный диапазон изменения. Так вот, у - это функция от х, при условии, что каждому значению второй переменной соответствует одно значение второй. При этом переменная у - зависима, ее и называют функцией. Принято говорить, что переменные х и у находятся в Для большей наглядности данной зависимости строят график функции. Что такое график функции? Это множество точек на координатной плоскости, где каждому значению х соответствует одно значение у. Графики могут быть разные - прямая линия, гипербола, парабола, синусоида и так далее.

График функции невозможно построить без исследования. Сегодня мы научимся проводить исследование и построим график функции. Очень важно в ходе исследования на наносить пометки. Так справиться с задачей будет намного проще. Наиболее удобный план исследования:

  1. Область определения.
  2. Непрерывность.
  3. Четность или нечетность.
  4. Периодичность.
  5. Асимптоты.
  6. Нули.
  7. Знакопостоянство.
  8. Возрастание и убывание.
  9. Экстремумы.
  10. Выпуклость и вогнутость.

Начнем с первого пункта. Найдем область определения, то есть на каких промежутках существует наша функция: у=1/3(х^3-14х^2+49х-36). В нашем случае, функция существует при любых значениях х, то есть область определения равна R. Записать это можно следующим образом хÎR.

Непрерывность

Сейчас мы с вами будем исследовать функцию на разрыв. В математике термин «непрерывность» появился в результате изучения законов движения. Что является бесконечным? Пространство, время, некоторые зависимости (примером может служить зависимость переменных S и t в задачах на движение), температура нагреваемого объекта (воды, сковороды, термометра и так далее), непрерывная линия (то есть та, которую можно нарисовать, не отрывая от листа карандаш).

Непрерывным считается график, который не разрывается в некоторой точке. Одним из самых наглядных примеров такого графика является синусоида, которую вы можете увидеть на картинке в данном разделе. Функция непрерывна в некоторой точке х0, если соблюден ряд условий:

  • в данной точке определена функция;
  • правый и левый предел в точке равны;
  • предел равен значению функции в точке х0.

При несоблюдении хотя бы одного условия говорят, что функция терпит разрыв. А точки, в которых разрывается функция, принято называть точками разрыва. Примером функции, которая при графическом отображении будет «разрываться», может служить: у=(х+4)/(х-3). При этом у не существует в точке х=3 (так как на нуль делить нельзя).

В функции, которую исследуем мы (у=1/3(х^3-14х^2+49х-36)) оказалось все просто, так как график будет являться непрерывным.

Четность, нечетность

Теперь исследуйте функцию на четность. Для начала немного теории. Четной называют ту функцию, которая удовлетворяет условию f(-x)=f(x) при любом значении переменной х (из области значений). Примерами могут служить:

  • модуль х (график похож на галку, биссектриса первой и второй четверти графика);
  • х в квадрате (парабола);
  • косинус х (косинусоида).

Обратите внимание на то, что все эти графики симметричны, если рассматривать это относительно оси ординат (то есть у).

А что же тогда называют нечетной функцией? Таковыми являются те функции, которые удовлетворяют условию: f(-х)=-f(х) при любом значении переменной х. Примеры:

  • гипербола;
  • кубическая парабола;
  • синусоида;
  • тангенсоида и так далее.

Обратите внимание на то, что данные функции имеют симметрию относительно точки (0:0), то есть начала координат. Исходя из того, что было сказано в данном разделе статьи, четная и нечетная функция должна обладать свойством: х принадлежит множеству определения и -х тоже.

Исследуем функцию на четность. Мы можем заметить, что она не подходит ни под одно из описаний. Следовательно, наша функция не является ни четной, ни нечетной.

Асимптоты

Начнем с определения. Асимптота - это кривая, которая максимально приближена к графику, то есть расстояние от некоторой точки стремится к нулю. Всего выделяют три вида асимптот:

  • вертикальные, то есть параллельные оси у;
  • горизонтальные, то есть параллельные оси х;
  • наклонные.

Что касается первого вида, то данные прямые стоит искать в некоторых точках:

  • разрыв;
  • концы области определения.

В нашем случае функция непрерывна, а область определения равна R. Следовательно, вертикальные асимптоты отсутствуют.

Горизонтальная асимптота есть у графика функции, который отвечает следующему требованию: если х стремится к бесконечности или минус бесконечности, а предел равен некоторому числу (например, а). В данном случае у=а - это и есть горизонтальная асимптота. В исследуемой нами функции горизонтальных асимптот нет.

Наклонная асимптота существует только в том случае, если соблюдены два условия:

  • lim (f(x))/x=k;
  • lim f(x)-kx=b.

Тогда ее можно найти по формуле: у=kx+b. Опять же, в нашем случае наклонных асимптот нет.

Нули функции

Следующим этапом нам необходимо исследовать график функции на нули. Очень важно отметить и то, что задание, связанное с нахождением нулей функции, встречается не только при исследовании и построении графика функции, но и как самостоятельное задание, и как способ решения неравенств. От вас могут потребовать найти нули функции на графике или использовать математическую запись.

Нахождение данных значений поможет вам более точно составить график функции. Если говорить простым языком, то нуль функции - это значение переменной х, при которой у=0. Если вы ищите нули функции на графике, то стоит обратить внимание на точки, в которых происходит пересечение графика с осью абсцисс.

Чтобы найти нули функции, необходимо решить следующее уравнение: у=1/3(х^3-14х^2+49х-36)=0. После проведения необходимых вычислений, мы получаем следующий ответ:

Знакопостоянство

Следующий этап исследования и построения функции (графика) - это нахождение промежутков знакопостоянства. Это значит, что мы должны определить, на каких промежутках функция принимает положительное значение, а на каких - отрицательное. Это нам помогут сделать найденные в прошлом разделе нули функции. Итак, нам нужно построить прямую (отдельно от графика) и в правильном порядке распределить по ней нули функции от меньшего к большему. Теперь нужно определить, какой из полученных промежутков имеет знак «+», а какой «-».

В нашем случае, функция принимает положительное значение на промежутках:

  • от 1 до 4;
  • от 9 до бесконечности.

Отрицательное значение:

  • от минус бесконечности до 1;
  • от 4 до 9.

Это определить достаточно просто. Подставьте любое число из промежутка в функцию и посмотрите с каким знаком получился ответ (минус или плюс).

Возрастание и убывание функции

Для того чтобы исследовать и построить функцию, нам необходимо узнать, где график будет возрастать (идти вверх по Оу), а где будет падать (ползти вниз по оси ординат).

Функция возрастает только в том случае, если большему значению переменной х соответствует большее значение у. То есть х2 больше х1, а f(х2) больше f(x1). И совершенно обратное явление мы наблюдаем у убывающей функции (чем больше х, тем меньше у). Для определения промежутков возрастания и убывания необходимо найти следующее:

  • область определения (у нас уже есть);
  • производную (в нашем случае: 1/3(3х^2-28х+49);
  • решить уравнение 1/3(3х^2-28х+49)=0.

После вычислений мы получаем результат:

Получаем: функция возрастает на промежутках от минуса бесконечности до 7/3 и от 7 до бесконечности, а убывает на промежутке от 7/3 до 7.

Экстремумы

Исследуемая функция y=1/3(х^3-14х^2+49х-36) является непрерывной и существует при любых значениях переменной х. Точка экстремума показывает максимум и минимум данной функции. В нашем случае таковых не имеется, что значительно упрощает задачу построения. В противном случае так же находятся при помощи производной функции. После нахождения не забывайте отмечать их на графике.

Выпуклость и вогнутость

Продолжаем далее исследовать функцию y(x). Сейчас нам нужно проверить ее на выпуклость и вогнутость. Определения этих понятий достаточно тяжело воспринять, лучше все проанализировать на примерах. Для теста: функция выпуклая, если является неубывающей функции. Согласитесь, это непонятно!

Нам нужно найти производную от функции второго порядка. Мы получаем: у=1/3(6х-28). Теперь приравняем правую часть к нулю и решим уравнение. Ответ: х=14/3. Мы нашли точку перегиба, то есть место, где график меняет выпуклость на вогнутость или наоборот. На промежутке от минус бесконечности до 14/3 функция выпукла, а от 14/3 до плюс бесконечности - вогнута. Очень важно отметить и то, что точка перегиба на графике должна быть плавной и мягкой, никаких острых углов присутствовать не должно.

Определение дополнительных точек

Наша задача - исследовать и построить график функции. Мы закончили исследование, построить график функции теперь не составит труда. Для более точного и детального воспроизведения кривой или прямой на координатной плоскости можно найти несколько вспомогательных точек. Их вычислить довольно просто. Например, мы возьмем х=3, решаем полученное уравнение и находим у=4. Или х=5, а у=-5 и так далее. Дополнительных точек вы можете брать столько, сколько вам необходимо для построения. Минимум их находят 3-5.

Построение графика

Нам необходимо было исследовать функцию (x^3-14х^2+49х-36)*1/3=у. Все необходимые пометки в ходе вычислений были нанесены на координатной плоскости. Все что осталось сделать - построить график, то есть соединить все точки между собой. Соединять точки стоит плавно и аккуратно, это дело мастерства - немного практики и ваш график будет идеальным.

К сожалению, не все студенты и школьники знают и любят алгебру, но готовить домашние задания, решать контрольные и сдавать экзамены приходится каждому. Особенно трудно многим даются задачи на построение графиков функций: если где-то что-то не понял, не доучил, упустил — ошибки неизбежны. Но кому же хочется получать плохие оценки?

Не желаете пополнить когорту хвостистов и двоечников? Для этого у вас есть 2 пути: засесть за учебники и восполнить пробелы знаний либо воспользоваться виртуальным помощником — сервисом автоматического построения графиков функций по заданным условиям. С решением или без. Сегодня мы познакомим вас с несколькими из них.

Лучшее, что есть в Desmos.com, это гибко настраиваемый интерфейс, интерактивность, возможность разносить результаты по таблицам и бесплатно хранить свои работы в базе ресурса без ограничений по времени. А недостаток — в том, что сервис не полностью переведен на русский язык.

Grafikus.ru

Grafikus.ru — еще один достойный внимания русскоязычный калькулятор для построения графиков. Причем он строит их не только в двухмерном, но и в трехмерном пространстве.

Вот неполный перечень заданий, с которыми этот сервис успешно справляется:

  • Черчение 2D-графиков простых функций: прямых, парабол, гипербол, тригонометрических, логарифмических и т. д.
  • Черчение 2D-графиков параметрических функций: окружностей, спиралей, фигур Лиссажу и прочих.
  • Черчение 2D-графиков в полярных координатах.
  • Построение 3D-поверхностей простых функций.
  • Построение 3D-поверхностей параметрических функций.

Готовый результат открывается в отдельном окне. Пользователю доступны опции скачивания, печати и копирования ссылки на него. Для последнего придется авторизоваться на сервисе через кнопки соцсетей.

Координатная плоскость Grafikus.ru поддерживает изменение границ осей, подписей к ним, шага сетки, а также — ширины и высоты самой плоскости и размера шрифта.

Самая сильная сторона Grafikus.ru — возможность построения 3D-графиков. В остальном он работает не хуже и не лучше, чем ресурсы-аналоги.

Onlinecharts.ru

Онлайн-помощник Onlinecharts.ru строит не графики, а диаграммы практически всех существующих видов. В том числе:

  • Линейные.
  • Столбчатые.
  • Круговые.
  • С областями.
  • Радиальные.
  • XY-графики.
  • Пузырьковые.
  • Точечные.
  • Полярные бульки.
  • Пирамиды.
  • Спидометры.
  • Столбчато-линейные.

Пользоваться ресурсом очень просто. Внешний вид диаграммы (цвет фона, сетки, линий, указателей, форма углов, шрифты, прозрачность, спецэффекты и т. д.) полностью определяется пользователем. Данные для построения можно ввести как вручную, так и импортировать из таблицы CSV-файла, хранимого на компьютере. Готовый результат доступен для скачивания на ПК в виде картинки, PDF-, CSV- или SVG-файлов, а также для сохранения онлайн на фотохостинге ImageShack.Us или в личном кабинете Onlinecharts.ru. Первый вариант могут использовать все, второй — только зарегистрированные.

Загрузка...
Top