Как определить момент инерции тела. Формула момента инерции

ОПРЕДЕЛЕНИЕ

Момент инерции относительно оси, вокруг которой происходит вращение - это мера инертности тела, совершающего вращательные движения.

Момент инерции является скалярной (в общем случае тензорной) физической величиной, которую находят как сумму произведений масс материальных точек () (на которые следует провести разбиение рассматриваемого тела) на квадраты расстояний () от них до оси вращения:

Если тело считают непрерывным, то суммирование в выражении (1) заменяется интегрированием, массы элементов тела обозначают как :

где r - функция положения материальной точки в пространстве; - плотность тела; -объем элемента тела. Если тело является однородным:

Момент инерции материальной точки

Роль массы при движении по окружности материальной точки выполняет момент инерции (J), который равен:

где r- расстояние от материальной точки до оси вращения. Для материальной точки, которая движется по окружности, момент инерции является постоянной величиной.

Момент инерции является аддитивной величиной. Это означает то, что если в системе не одна, а несколько материальных точек, то момент инерции системы (J) равен сумме моментов инерции () отдельных точек:

Примеры моментов инерции некоторых тел

Момент инерции тонкого стержня вращающегося около оси, проходящей через его один конец и перпендикулярно стержню, равен:

Момент инерции прямого круглого конуса, массы высоты h и радиуса r вращающегося около своей оси:

Момент инерции однородного твердого параллелепипеда, c геометрическими параметрами и массой m вращающегося относительно своей самой длинной диагонали, вычисляют по формуле:

Момент инерции тонкой прямоугольной пластины массы m, ширины w и длины d, вращающейся относительно оси, которая проходит через точку пересечения диагоналей этого прямоугольника перпендикулярно плоскости пластины:

где m - масса шара; R - радиус шара. Шар вращается около оси, которая проходит через его центр.

Примеры формул для вычисления моментов инерции других тел можно посмотреть в разделе . В этом же разделе можно ознакомиться с теоремой Штейнера.

Примеры решения задач по теме «Момент инерции»

ПРИМЕР 1

Задание Два малых шарика массой m каждый соединены тонким невесомым стержнем, длина которого равна Каким будет момент инерции системы относительно оси, которая проходит перпендикулярно стержню через центр масс сиcтемы?

Решение Для решения задачи используем формулу для момента инерции одной материальной точки:

где расстояние от точки до оси вращения равно . Следовательно, формула (1.1) преобразуется к виду:

Так как массы первой и второй материальных точек равны, равны расстояния от каждой из них до оси вращения, то:

Момент инерции является аддитивной величиной, значит, момент инерции двух точек найдем как сумму и :

Ответ

ПРИМЕР 2

Задание Каков момент инерции системы, которая изображена на рис.2 и состоит из двух тонких стержней с массами m. Угол между стержнями прямой. Длины стержней равны l. Ось вращения параллельна одному из стержней (рис.2).

Решение Момент инерции системы можно найти как сумму моментов инерции каждого стержня относительно оси вращения:

Момент инерции () для горизонтального стержня равен:

Рассмотрим материальную точку массой m, которая находится на расстоянии r, от неподвижной оси (рис. 26). Моментом инерции J материальной точки относительно оси называется скалярная физическая величина, равная произведению массы m на квадрат расстояния r до этой оси:

J = mr 2 (75)

Момент инерции системы N материальных точек будет равен сумме моментов инерции отдельных точек:

Рис. 26.

К определению момента инерции точки.

Если масса распределена в пространстве непрерывно, то суммирование заменяется интегрированием. Тело разбивается на элементарные объемы dv, каждый из которых обладает массой dm.

В результате получается следующее выражение:

Для однородного по объему тела плотность ρ постоянна, и записав элементарную массу в виде:

dm = ρdv, преобразуем формулу (70) следующим образом:

Размерность момента инерции - кг*м 2 .

Момент инерции тела является мерой инертности тела во вращательном движении, подобно тому, как масса тела является мерой его инертности при поступательном движении.

Момент инерции — это мера инертных свойств твердого тела при вращательном движении, зависящая от распределения массы относительно оси вращения. Иными словами, момент инерции зависит от массы, формы, размеров тела и положения оси вращения.

Всякое тело, независимо от того, вращается оно или покоится, обладает моментом инерции относительно любой оси, подобно тому, как тело обладает массой независимо от того, движется оно или находиться в покое. Аналогично массе момент инерции является величиной аддитивной.

В некоторых случаях теоретический расчёт момента инерции достаточно прост. Ниже приведены моменты инерции некоторых сплошных тел правильной геометрической формы относительно оси, проходящей через центр тяжести.

Момент инерции бесконечно плоского диска радиуса R относительно оси, перпендикулярной плоскости диска :

Момент инерции шара радиуса R :

Момент инерции стержня длиной L относительно оси, проходящей через середину стержня перпендикулярно ему:

Момент инерции бесконечно тонкого обруча радиуса R относительно оси, перпендикулярной его плоскости:

Момент инерции тела относительно произвольной оси рассчитывается с помощью теоремы Штейнера :

Момент инерции тела относительно произвольной оси равен сумме момента инерции относительно оси, проходящей через центр масс параллельно данной, и произведения массы тела на квадрат расстояния между осями.

Рассчитаем при помощи теоремы Штейнера момент инерции стержня длиной L относительно оси, проходящей через конец перпендикулярно ему (рис. 27).

К расчету момента инерции стержня

Согласно теореме Штейнера, момент инерции стержня относительно оси O′O′ равен моменту инерции относительно оси OO плюс md 2 . Отсюда получаем:


Очевидно: момент инерции неодинаков относительно разных осей, и поэтому, решая задачи на динамику вращательного движения, момент инерции тела относительно интересующей нас оси каждый раз приходится искать отдельно. Так, например, при конструировании технических устройств, содержащих вращающиеся детали (на железнодорожном транспорте, в самолетостроении, электротехнике и т. д.), требуется знание величин моментов инерции этих деталей. При сложной форме тела теоретический расчет его момента инерции может оказаться трудно выполнимым. В этих случаях предпочитают измерить момент инерции нестандартной детали опытным путем.

Момент силы F относительно точки O

Пусть некоторое тело под действием силы F, приложенной в точке А, приходит во вращение вокруг оси ОО" (рис. 1.14).

Сила действует в плоскости, перпендикулярной оси. Перпендикуляр р, опущенный из точки О (лежащей на оси) на направление силы, называют плечом силы . Произведение силы на плечо определяет модуль мо­мента силы относительно точки О:

М = Fp=Frsinα.

Момент силы есть вектор, определяемый векторным произведением радиуса-вектора точки приложения силы и вектора силы:

(3.1) Единица момента силы - ньютон-метр (Н м).

Направление М можно найти с помощью правила правого винта.

Моментом импульса частицы называется векторное произведение радиус-вектора частицы на её импульс:

или в скалярном виде L = гPsinα

Эта величины векторная и совпадает по направлению с векторами ω.

§ 3.2 Момент инерции. Теорема Штейнера

Мерой инертности тел при поступательном движении является масса. Инертность тел при вращательном движении зависит не только от массы, но и от ее распределения в пространстве относительно оси вращения. Мерой инертности при вращательном движении служит величина, назы­ваемая моментом инерции тела относительно оси вращения.

Моментом инерции материальной точки относительно оси враще­ния называют произведение массы этой точки на квадрат расстояния её от оси:

I i =m i r i 2 (3.2)

Момент инерции тела относительно оси вращения называют сумму мо­ментов инерции материальных точек, из которых состоит это тело:

(3.3)

В общем случае, если тело сплошное и представляет собой совокупность точек с малыми массами dm, момент инерции определяется интегрированием:

(3.4)

Если тело однородно и его плотность
, то момент инерции тела

(3.5)

Момент инерции тела зависит от того, относительно какой оси оно вращается и как распределена масса тела по объему.

Наиболее просто определяется момент инерции тел, имеющих правильную геометрическую форму и равномерное распределение массы по объему.

    Момент инерции однородного стержня относительно оси, проходящей через центр инерции и перпендикулярной стержню

(3.6)

    Момент инерции однородного цилиндра относительно оси, перпен­дикулярной его основанию и проходящей через центр инерции,

(3.7)

    Момент инерции тонкостенного цилиндра или обруча относительно оси, перпендикулярной плоскости его основания и проходящей через его центр,

(3.8)

    Момент инерции шара относительно диаметра

(3.9)

Рассмотрим пример. Определим момент инерции диска относительно оси, проходящей через центр инерции и перпендикулярной плоско­сти вращения. Масса диска - m, радиус - R.

Площадь кольца (рис. 3.2), заключенного между

r и r + dr, равна dS = 2πr·dr . Площадь диска S = πR 2 .

Следовательно,
. Тогда

или

Согласно

Приведенные формулы для моментов инерции тел даны при условии, что ось вращения проходит через центр инерции. Чтобы определить моменты инерции тела относительно произвольной оси, следует воспользоваться теоремой Штейнера : момент инерции тела относительно произвольной оси вращения равен сумме момента инерции тела относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями:

(3.11)

Единица момента инерции - килограмм-метр в квадрате (кг· м 2).

Так, момент инерции однородного стержня относительно оси, проходящей через его конец, по теореме Штейнера равен

(3.12)

Рассмотрим теперь проблему определения момента инерции различных тел. Общая формула для нахождения момента инерции объекта относительно оси z имеет вид

Иными словами, нужно сложить все массы, умножив каждую из них на квадрат ее расстояния до оси (x 2 i + y 2 i). Заметьте, что это верно даже для трехмерного тела, несмотря на то, что расстояние имеет такой «двумерный вид». Впрочем, в большинстве случаев мы будем ограничиваться двумерными телами.

В качестве простого примера рассмотрим стержень, вращающийся относительно оси, проходящей через его конец и перпендикулярной к нему (фиг. 19.3). Нам нужно просуммировать теперь все массы, умноженные на квадраты расстояния х (в этом случае все у — нулевые). Под суммой, разумеется, я имею в виду интеграл от х 2 , умноженный на «элементики» массы. Если мы разделим стержень на кусочки длиной dx, то соответствующий элемент массы будет пропорционален dx, а если бы dx составляло длину всего стержня, то его масса была бы равна М. Поэтому

Размерность момента инерции всегда равна массе, умноженной на квадрат длины, так что единственная существенная величина, которую мы вычислили, это множитель 1/3.

А чему будет равен момент инерции I, если ось вращения проходит через середину стержня? Чтобы найти его, нам снова нужно взять интеграл, но уже в пределах от —1/2L до +1/2L. Заметим, однако, одну особенность этого случая. Такой стержень с проходящей через центр осью можно представлять себе как два стержня с осью, проходящей через конец, причем масса каждого из них равна М/2, а длина равна L/2. Моменты инерции двух таких стержней равны друг другу и вычисляются по формуле (19.5). Поэтому момент инерции всего стержня равен

Таким образом, стержень гораздо легче крутить за середину, чем за конец.

Можно, конечно, продолжить вычисление моментов инерции других интересующих нас тел. Но поскольку такие расчеты требуют большого опыта в вычислении интегралов (что очень важно само по себе), они как таковые не представляют для нас большого интереса. Впрочем, здесь имеются некоторые очень интересные и полезные теоремы. Пусть имеется какое-то тело и мы хотим узнать его момент инерции относительно какой-то оси . Это означает, что мы хотим найти его инертность при вращении вокруг этой оси. Если мы будем двигать тело за стержень, подпирающий его центр масс так, чтобы оно не поворачивалось при вращении вокруг оси (в этом случае на него не действуют никакие моменты сил инерции, поэтому тело не будет поворачиваться, когда мы начнем двигать его), то для того, чтобы повернуть его, понадобится точно такая же сила, как если бы вся масса была сосредоточена в центре масс и момент инерции был бы просто равен I 1 = MR 2 ц.м. , где R ц.м — расстояние от центра масс до оси вращения. Однако формула эта, разумеется, неверна. Она не дает правильного момента инерции тела. Ведь в действительности при повороте тело вращается. Крутится не только центр масс (что давало бы величину I 1), само тело тоже должно поворачиваться относительно центра масс. Таким образом, к моменту инерции I 1 нужно добавить I ц — момент инерции относительно центра масс. Правильный ответ состоит в том, что момент инерции относительно любой оси равен

Эта теорема называется теоремой о параллельном переносе оси. Доказывается она очень легко. Момент инерции относительно любой оси равен сумме масс, умноженных на сумму квадратов х и у, т. е. I = Σm i (x 2 i + y 2 i). Мы сейчас сосредоточим наше внимание на х, однако все в точности можно повторить и для у. Пусть координата х есть расстояние данной частной точки от начала координат; посмотрим, однако, как все изменится, если мы будем измерять расстояние х` от центра масс вместо х от начала координат. Чтобы это выяснить, мы должны написать
x i = x` i + X ц.м.
Возводя это выражение в квадрат, находим
x 2 i = x` 2 i + 2X ц.м. x` i + X 2 ц.м.

Что получится, если умножить его на m i и просуммировать по всем r? Вынося постоянные величины за знак суммирования, находим

I x = Σm i x` 2 i + 2X ц.м. Σm i x` i + X2 ц.м. Σm i

Третью сумму подсчитать легко; это просто МХ 2 ц.м. . Второй член состоит из двух сомножителей, один из которых Σm i x` i ; он равен x`-координате центра масс. Но это должно быть равно нулю, ведь х` отсчитывается от центра масс, а в этой системе координат среднее положение всех частиц, взвешенное их массами, равно нулю. Первый же член, очевидно, представляет собой часть х от I ц. Таким образом, мы и приходим к формуле (19.7).

Давайте проверим формулу (19.7) на одном примере. Просто проверим, будет ли она применима для стержня. Мы уже нашли, что момент инерции стержня относительно его конца должен быть равен ML 2 /3. А центр масс стержня, разумеется, находится на расстоянии L/2. Таким образом, мы должны получить, что ML 2 /3=ML 2 /12+M(L/2) 2 . Так как одна четвертая + одна двенадцатая = одной третьей, то мы не сделали никакой грубой ошибки.

Кстати, чтобы найти момент инерции (19.5), вовсе не обязательно вычислять интеграл. Можно просто предположить, что он равен величине ML 2 , умноженной на некоторый неизвестный коэффициент γ. После этого можно использовать рассуждения о двух половинках и для момента инерции (19.6) получить коэффициент 1/4γ. Используя теперь теорему о параллельном переносе оси, докажем, что γ=1/4γ + 1/4, откуда γ=1/3. Всегда можно найти какой-нибудь окольный путь!

При применении теоремы о параллельных осях важно помнить, что ось I ц должна быть параллельна оси, относительно которой мы хотим вычислять момент инерции.

Стоит, пожалуй, упомянуть еще об одном свойстве, которое часто бывает очень полезно при нахождении момента инерции некоторых типов тел. Оно состоит в следующем: если у нас есть плоская фигура и тройка координатных осей с началом координат, расположенным в этой плоскости, и осью z, направленной перпендикулярно к ней, то момент инерции этой фигуры относительно оси z равен сумме моментов инерции относительно осей х и у. Доказывается это совсем просто. Заметим, что

Момент инерции однородной прямоугольной пластинки, например с массой М, шириной ω и длиной L относительно оси, перпендикулярной к ней и проходящей через ее центр, равен просто

поскольку момент инерции относительно оси, лежащей в плоскости пластинки и параллельной ее длине, равен Mω 2 /12, т. е. точно такой же, как и для стержня длиной ω, а момент инерции относительно другой оси в той же плоскости равен ML 2 /12, такой же, как и для стержня длиной L.

Итак, перечислим свойства момента инерции относительно данной оси, которую мы назовем осью z:

1. Момент инерции равен

2. Если предмет состоит из нескольких частей, причем момент инерции каждой из них известен, то полный момент инерции равен сумме моментов инерции этих частей.
3. Момент инерции относительно любой данной оси равен моменту инерции относительно параллельной оси, проходящей через центр масс, плюс произведение полной массы на квадрат расстояния данной оси от центра масс.
4. Момент инерции плоской фигуры относительно оси, перпендикулярной к ее плоскости, равен сумме моментов инерции относительно любых двух других взаимно перпендикулярных осей, лежащих в плоскости фигуры и пересекающихся с перпендикулярной осью.

В табл. 19.1 приведены моменты инерции некоторых элементарных фигур, имеющих однородную плотность масс, а в табл. 19.2 — моменты инерции некоторых фигур, которые могут быть получены из табл. 19.1 с использованием перечисленных выше свойств.

Системы на квадраты их расстояний до оси:

  • m i - масса i -й точки,
  • r i - расстояние от i -й точки до оси.

Осевой момент инерции тела J a является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении .

Если тело однородно, то есть его плотность всюду одинакова, то

Теорема Гюйгенса-Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы , формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела J c относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

где - полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

Осевые моменты инерции некоторых тел

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
Тело Описание Положение оси a Момент инерции J a
Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра
Полый толстостенный цилиндр массы m с внешним радиусом r 2 и внутренним радиусом r 1 Ось цилиндра
Сплошной цилиндр длины l , радиуса r и массы m
Полый тонкостенный цилиндр (кольцо) длины l , радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы
Шар радиуса r и массы m Ось проходит через центр шара
Конус радиуса r и массы m Ось конуса
Равнобедренный треугольник с высотой h , основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс

Вывод формул

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобъём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJ i . Тогда

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы

Пусть имеется однородное кольцо с внешним радиусом R , внутренним радиусом R 1 , толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr . Масса и момент инерции тонкого кольца радиуса r составит

Момент инерции толстого кольца найдём как интеграл

Поскольку объём и масса кольца равны

получаем окончательную формулу для момента инерции кольца

Однородный диск (сплошной цилиндр)

Вывод формулы

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R 1 = 0), получим формулу для момента инерции цилиндра (диска):

Сплошной конус

Вывод формулы

Разобьём конус на тонкие диски толщиной dh , перепендикулярные оси конуса. Радиус такого диска равен

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

Интегрируя, получим

Сплошной однородный шар

Вывод формулы

Разобъём шар на тонкие диски толщиной dh , перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

Масса и момент инерции такого диска составят

Момент инерции сферы найдём интегрированием:

Тонкостенная сфера

Вывод формулы

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R :

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR .

Тонкий стержень (ось проходит через центр)

Вывод формулы

Разобъём стержень на малые фрагменты длиной dr . Масса и момент инерции такого фрагмента равна

Интегрируя, получим

Тонкий стержень (ось проходит через конец)

Вывод формулы

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l /2. По теореме Штейнера новый момент инерции будет равен

Безразмерные моменты инерции планет и их спутников

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr 2). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение допплеровского смещения радиосигнала, передаваемого АМС , пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара - 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра.

Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины:

где x , y и z - координаты малого элемента тела объёмом dV , плотностью ρ и массой dm .

Ось OX называется главной осью инерции тела , если центробежные моменты инерции J xy и J xz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции тела .

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела , а моменты инерции относительно этих осей - его главными центральными моментами инерции . Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции.

Геометрический момент инерции

Геометрический момент инерции - геометрическая характеристика сечения вида

где - расстояние от центральной оси до любой элементарной площадки относительно нейтральной оси .

Геометрический момент инерции не связан с движением материала, он лишь отражает степень жесткости сечения. Используется для вычисления радиуса инерции, прогиба балки, подбора сечения балок, колонн и др.

Единица измерения СИ - м 4 . В строительных расчетах, литературе и сортаментах металлопроката в частности указывается в см 4 .

Из него выражается момент сопротивления сечения:

.
Геометрические моменты инерции некоторых фигур
Прямоугольника высотой и шириной :
Прямоугольного коробчатого сечения высотой и шириной по внешним контурам и , а по внутренним и соответственно
Круга диаметром

Центральный момент инерции

Центральный момент инерции (или момент инерции относительно точки O) - это величина

Центральный момент инерции можно выразить через главные осевые или центробежные моменты инерции: .

Тензор инерции и эллипсоид инерции

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором , можно представить в виде квадратичной (билинейной) формы :

(1),

где - тензор инерции . Матрица тензора инерции симметрична, имеет размеры и состоит из компонент центробежных моментов:

,
.

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора :
,
где -

Загрузка...
Top