Площадь криволинейной трапеции равна. Тема: Криволинейная трапеция и ее площадь

Рассмотрим криволинейную трапецию, ограниченную осью Ох, кривой y=f(x) и двумя прямыми: х=а и х=Ь (рис. 85). Возьмем произвольное значение х (только не а и не Ь). Дадим ему приращение h = dx и рассмотрим полоску, ограниченную прямыми АВ и CD, осью Ох и дугой BD, принадлежащей рассматриваемой кривой. Эту полоску будем называть элементарной полоской. Площадь элементарной полоски отличается от площади прямоугольника ACQB на криволинейный треугольник BQD, а площадь последнего меньше площади прямоугольника BQDM со сторонами BQ = =h=dx} QD=Ay и площадью, равной hAy = Ay dx. С уменьшением стороны h сторона Ду также уменьшается и одновременно с h стремится к нулю. Поэтому площадь BQDM является бесконечно малой второго порядка. Площадь элементарной полоски есть приращение площади, а площадь прямоугольника ACQB, равная АВ-АС==/(х) dx> есть дифференциал площади. Следовательно, саму площадь найдем, интегрируя ее дифференциал. В пределах рассматриваемой фигуры независимое переменное л: меняется от а до b, поэтому искомая площадь 5 будет равна 5= \f(x) dx. (I) Пример 1. Вычислим площадь, ограниченную параболой у - 1 -х*, прямыми X =--Fj-, х = 1 и осью О* (рис. 86). у Рис. 87. Рис. 86. 1 Здесь f(x)= 1 - л?, пределы интегрирования а = - и £=1, поэтому J [*-т]\- -fl -- Г -1-±Л_ 1V1 -l-l-Ii-^ 3) |_ 2 3V 2 / J 3 24 24* Пример 2. Вычислим площадь, ограниченную синусоидой y = sinXy осью Ох и прямой (рис. 87). Применяя формулу (I), получаем Л 2 S= J sinxdx= [-cos x]Q =0 -(-1) = lf Пример 3. Вычислим площадь, ограниченную дугой синусоиды ^у = sin jc, заключенной между двумя соседними точками пересечения с осью Ох (например, между началом координат и точкой с абсциссой я). Заметим, что из геометрических соображений ясно, что эта площадь будет в два раза больше площади предыдущего примера. Однако проделаем вычисления: я 5= | s\nxdx= [ - cosх}* - - cos я-(-cos 0)= 1 + 1 = 2. о Действительно, наше предположение оказалось справедливым. Пример 4. Вычислить площадь, ограниченную синусоидой и ^ осью Ох на одном пе-х риоде (рис. 88). Предварительные рас-рис суждения позволяют предположить, что площадь получится в четыре раза больше, чем в пр. 2. Однако, произведя вычисления, получим «я Г,*я S - \ sin х dx = [ - cos х]0 = = -cos 2л -(-cos 0) = - 1 + 1 = 0. Этот результат требует разъяснений. Для выяснения сути дела вычисляем еще площадь, ограниченную той же синусоидой у = sin л: и осью Ох в пределах от л до 2я. Применяя формулу (I), получаем 2л $2л sin хdx=[ - cosх]л =-cos 2я~}-с05я=- 1-1 =-2. я Таким образом, видим, что эта площадь получилась отрицательной. Сравнивая ее с площадью, вычисленной в пр. 3, получаем, что их абсолютные величины одинаковы, а знаки разные. Если применить свойство V (см. гл. XI, § 4), то получим 2л я 2л J sin xdx= J sin * dx [ sin x dx = 2 + (- 2) = 0То, что получилось в этом примере, не является случайностью. Всегда площадь, расположенная ниже оси Ох, при условии, что независимое переменное изменяется слева направо, получается при вычислении с помощью интегралов отрицательной. В этом курсе мы всегда будем рассматривать площади без знаков. Поэтому ответ в только что разобранном примере будет таким: искомая площадь равна 2 + |-2| = 4. Пример 5. Вычислим площадь ОАВ, указанную на рис. 89. Эта площадь ограничена осью Ох, параболой у = - хг и прямой у - =-х+\. Площадь криволинейной трапеции Искомая площадь ОАВ состоит из двух частей: ОАМ и МАВ. Так как точка А является точкой пересечения параболы и прямой, то ее координаты найдем, решая систему уравнений 3 2 У = тх. (нам нужно найти только абсциссу точки А). Решая систему, находим л; = ~. Поэтому площадь приходится вычислять по частям, сначала пл. ОАМ, а затем пл. МАВ: .... Г 3 2 , 3 Г хП 3 1 / 2 У 2 . QAM-^х непрерывной и неотрицательной фукнции f (x ), ординатами, проведенными в точках a и b , и отрезком оси Ox между точками a и b (см. Рис. 2).

Докажем следующее утверждение.

Криволинейная трапеция представляет собой квадрируемую фигуру, площадь P

Доказательство . Так как непрерывная на сегменте [a , b ] функция интегрируема, то для любого положительного числа ε можно указать такое разбиение T сегмента [a , b ], что разность S - s < ε , где S и s - соответственно верхняя и нижняя суммы разбиения T . Но S и s равны соответственно S d и S i , где S d и S i - площади ступенчатых фигур (многоугольников), первая из которых содержит криволинейную трапецию, а вторая содержится в криволинейной трапеции (на Рис. 2 изображены также и указанные ступенчатые фигуры). Так как S d - S i < ε , то, в силу теоремы 1, криволинейная трапеция квадрируема. Поскольку предел при Δ → 0 верхних и нижних сумм равен и s P S , то площадь P криволинейной трапеции может быть найдена по формуле (1).

Замечание . Если функция f (x ) непрерывна и неположительна на сегменте [a , b ], то значение интеграла равно взятой с отрицательным знаком площади криволинейной трапеции, ограниченной графиком функции f (x ), ординатами в точках a и b и отрезком оси Ox между точками a и b . Поэтому, еслиf (x ) меняет знак, то равен сумме взятых с определенным знаком площадей криволинейных трапеций, расположенных выше и ниже оси Ox , причем площади первых берутся со знаком +, а вторых со знаком -.

Площадь криволинейного сектора

Пусть кривая L задана в полярной системе координат уравнением r = r (θ ), α θ β (см. Рис. 3), причем функция r (θ ) непрерывна и неотрицательна на сегменте [α , β ]. Плоскую фигуру, ограниченную кривой L и двумя лучами, составляющими с полярной осью углы α и β , будем называть криволинейным сектором .

Докажем следующее утверждение. Криволинейный сектор представляет собой квадрируемую фигуру, площадь P которой может быть вычислена по формуле

Доказательство . Рассмотрим разбиение T сегмента [α , β ] точками α = θ 0 < θ 1 < ... < θ n = β и для каждого частичного сегмента [θ i -1 , θ i ] построим круговые секторы, радиусы которых равны минимальному r i и максимальному R i значениям r (θ ) на сегменте [θ i -1 , θ i ]. В результате получим две веерообразные фигуры, первая из которых содержится в криволинейном секторе, а вторая содержит криволинейный сектор (эти веерообразные фигуры изображены на Рис. 3). Площади и указанных веерообразных фигур равны соответственно и . Отметим, что первая из этих сумм является нижней суммойs для функции для указанного разбиения T сегмента [α , β ], а вторая сумма является верхней суммой S для этой же функции и этого же разбиения. Так как функция интегрируема на сегменте [α , β ], то разность может быть как угодно малой. Например, для любого фиксированного ε > 0 эта разность может быть сделана меньше ε /2. Впишем теперь во внутреннюю веерообразную фигуру многоугольник Q i с площадью S i , для которого , и опишем вокруг внешней веерообразной фигуры многоугольник Q d площадью S d , для которого * . Очевидно, первый из этих многоугольников вписан в криволинейный сектор, а второй описан вокруг него. Так как справедливы неравенства

№____ Дата________

Тема: Криволинейная трапеция и ее площад ь

Цели урока : Дать определения криволинейной трапеции и ее площади, научиться вычислять площадь криволинейной трапеции.

ХОД УРОКА

1. Организационный момент.

Приветствие учащихся, проверка готовности класса к уроку, организация внимания учащихся, раскрытие общих целей урока и плана его проведения.

2. Этап проверки домашнего задания.

Задачи: Установить правильность, полноту и осознанность выполнения д/з всеми учащимися, выявить пробелы в знаниях и способах деятельности учащихся. Определить причины возникновения затруднений, устранить обнаруженные пробелы.

3.Этап актуализации.

Задачи: обеспечение мотивации учения школьников, включение в совместную деятельность по определению целей урока. Актуализировать субъективный опыт учащихся.

Вспомним основные понятия и формулы.

Определение. Функция y= f (x), x (a,b), называется первообразной для функции y=f(x), x (a,b), если для каждого x (a,b) выполняется равенство

F (x)=f(x) .

Замечание. Если f (x) есть первообразная для функции f(x) , то при любой константе С , F(x)+C также является первообразной для f(x).

Задача нахождения всех первообразных функции f(x) называется интегрированием, а множество всех первообразных называется неопределенным интегралом для функции f(x) по dx и обозначается

Имеют место свойства:

1 . ;

2 . Если С= Const, то
;

3 .
.

Замечание. В школьном курсе математики не употребляется термин «неопределенный интеграл», вместо этого говорят «множество всех первообразных».

Приведем таблицу неопределенных интегралов.


Пример 1. Найти первообразную для функции
, проходящую через точку М (2;4).

Решение. Множество всех первообразных функции
есть неопределенный интеграл
. Вычислим его, используя свойства интеграла 1 и 2 . Имеем:

Получили, что множество всех первообразных задается семейством функций y=F(x)+C , то есть y=x 3 2x+C , где С – произвольная постоянная.

Зная, что первообразная проходит через точку М (2;4), подставим ее координаты в предыдущее выражение и найдем С .

4=2 3 –2 2+С С =4–8+4; С =0.

Ответ: F(x)=x 3 - 2x – искомая первообразная.

4. Формирование новых понятий и способов действия.

Задачи: Обеспечить восприятие, осмысление и запоминание учащимися изучаемого материала. Обеспечить усвоение учащимися методики воспроизведения изученного материала, содействовать философскому осмыслению усваиваемых понятий, законов, правил, формул. Установить правильность и осознанность учащимися изученного материала, выявить пробелы первичного осмысления, провести коррекцию. Обеспечить соотнесение учащимися своего субъективного опыта с признаками научного знания.

Нахождение площадей плоских фигур

Задача нахождения площади плоской фигуры тесно связана с задачей нахождения первообразных (интегрированием). А именно: площадь криволинейной трапеции ограниченной графиком функции y=f(x) (f(x)> 0) прямыми x=a; x=b; y= 0, равна разности значений первообразной для функции y=f(x) в точках b и a :

S=F(b)–F(a)

Дадим определение определенного интеграла.

О
пределение.
Пусть функция y=f(x) определена и интегрируема на отрезке [a,b ] и пусть F(x) – некоторая ее первообразная. Тогда число F(b)–F(a) называется интегралом от а до b функции f(x) и обозначается

.

Равенство
называется формулой Ньютона–Лейбница.

Эта формула связывает задачу нахождения площади плоской фигуры с интегралом.

В общем случае, если фигура ограничена графиками функций y=f(x) ; y=g(x) (f(x)>g(x) ) и прямыми x=a ; x=b , то ее площадь равна:

.

Пример2. В какой точке графика функции y=x 2 + 1 надо провести касательную, чтобы она отсекала от фигуры, образованной графиком этой функции и прямыми y= 0, x= 0, x= 1 трапецию наибольшей площади?

Решение. Пусть M 0 (x 0 ,y 0 ) – точка графика функции y=x 2 + 1, в которой проведена искомая касательная.

    Найдем уравнение касательной y=y 0 +f (x 0 )(x–x 0 ) .

Имеем:

Поэтому

.

    Найдем площадь трапеции ОАВС .

.

B – точка пересечения касательной с прямой x= 1 

Задача свелась к нахождению наибольшего значения функции

S (x )=–x 2 +x+ 1 на отрезке . Найдем S (x )=– 2x+ 1. Найдем критическую точку из условия S (x )= 0  x= .

Видим, что функция достигает наибольшего значения при x= . Найдем
.

Ответ: касательную надо провести в точке
.

Отметим, что часто встречается задача нахождения интеграла, исходя из его геометрического смысла. Покажем на примере, как решается такая задача.

Пример 4. Используя геометрический смысл интеграла вычислить

а)
; б)
.

Решение.

а)
– равен площади криволинейной трапеции, ограниченной линиями .

Преобразуем

– верхняя половина окружности с центром Р (1;0) и радиусом R= 1.

Поэтому
.

Ответ:
.

б) Рассуждая аналогично, построим область, ограниченную графиками .2 2x+ 2, касательными к ней в точках A
, B (4;2)

y= –9x– 59, параболой y= 3x 2 +ax+ 1, если известно, что касательная к параболе в точке x=– 2 составляет с осью Ox угол величиной arctg 6.

Найти а , если известно, что площадь криволинейной трапеции, ограниченной линиями y= 3x 3 + 2x, x=a, y= 0, равна единице.

Найти наименьшее значение площади фигуры, ограниченной параболой y=x 2 + 2x– 3 и прямой y=kx+ 1.

6.Этап информации о домашнем задании.

Задачи: Обеспечить понимание учащимися цели, содержания и способов выполнения домашнего задания.№18, 19,20,21 нечетные

7.Подведение итогов урока.

Задача: Дать качественную оценку работы класса и отдельных учащихся.


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Фигура, ограниченная графиком непрерывной неотрицательной на отрезке $$ функции $f(x)$ и прямыми $y=0, \ x=a$ и $x=b$, называется криволинейной трапецией.

Площадь соответствующей криволинейной трапеции вычисляется по формуле:

$S=\int\limits_{a}^{b}{f(x)dx}.$ (*)

Задачи на нахождение площади криволинейной трапеции мы будем условно делить на $4$ типа. Рассмотрим каждый тип подробнее.

I тип: криволинейная трапеция задана явно. Тогда сразу применяем формулу (*).

Например, найти площадь криволинейной трапеции, ограниченной графиком функции $y=4-(x-2)^{2}$, и прямыми $y=0, \ x=1$ и $x=3$.

Нарисуем эту криволинейную трапецию.

Применяя формулу (*), найдём площадь этой криволинейной трапеции.

$S=\int\limits_{1}^{3}{\left(4-(x-2)^{2}\right)dx}=\int\limits_{1}^{3}{4dx}-\int\limits_{1}^{3}{(x-2)^{2}dx}=4x|_{1}^{3} – \left.\frac{(x-2)^{3}}{3}\right|_{1}^{3}=$

$=4(3-1)-\frac{1}{3}\left((3-2)^{3}-(1-2)^{3}\right)=4 \cdot 2 – \frac{1}{3}\left((1)^{3}-(-1)^{3}\right) = 8 – \frac{1}{3}(1+1) =$

$=8-\frac{2}{3}=7\frac{1}{3}$ (ед.$^{2}$).

II тип: криволинейная трапеция задана неявно. У этого случая обычно не задаются или задаются частично прямые $x=a, \ x=b$. В этом случае нужно найти точки пересечения функций $y=f(x)$ и $y=0$. Эти точки и будут точками $a$ и $b$.

Например, найти площадь фигуры, ограниченной графиками функций $y=1-x^{2}$ и $y=0$.

Найдём точки пересечения. Для этого приравняем правые части функций.

Таким образом, $a=-1$, а $b=1$. Нарисуем эту криволинейную трапецию.

Найдём площадь этой криволинейной трапеции.

$S=\int\limits_{-1}^{1}{\left(1-x^{2}\right)dx}=\int\limits_{-1}^{1}{1dx}-\int\limits_{-1}^{1}{x^{2}dx}=x|_{-1}^{1} – \left.\frac{x^{3}}{3}\right|_{-1}^{1}=$

$=(1-(-1))-\frac{1}{3}\left(1^{3}-(-1)^{3}\right)=2 – \frac{1}{3}\left(1+1\right) = 2 – \frac{2}{3} = 1\frac{1}{3}$ (ед.$^{2}$).

III тип: площадь фигуры, ограниченной пересечением двух непрерывных неотрицательных функций. Эта фигура не будет криволинейной трапецией, а значит с помощью формулы (*) её площадь не вычислишь. Как же быть? Оказывается, площадь этой фигуры можно найти как разность площадей криволинейных трапеций, ограниченных верхней функцией и $y=0$ ($S_{uf}$), и нижней функцией и $y=0$ ($S_{lf}$), где в роли $x=a, \ x=b$ выступают координаты по $x$ точек пересечения данных функций, т.е.

$S=S_{uf}-S_{lf}$. (**)

Самое главное при вычислении таких площадей – не “промахнуться” с выбором верхней и нижней функции.

Например, найти площадь фигуры, ограниченной функциями $y=x^{2}$ и $y=x+6$.

Найдём точки пересечения этих графиков:

По теореме Виета,

$x_{1}=-2, \ x_{2}=3.$

То есть, $a=-2, \ b=3$. Изобразим фигуру:

Таким образом, верхняя функция – $y=x+6$, а нижняя – $y=x^{2}$. Далее, найдём $S_{uf}$ и $S_{lf}$ по формуле (*).

$S_{uf}=\int\limits_{-2}^{3}{(x+6)dx}=\int\limits_{-2}^{3}{xdx}+\int\limits_{-2}^{3}{6dx}=\left.\frac{x^{2}}{2}\right|_{-2}^{3} + 6x|_{-2}^{3}= 32,5$ (ед.$^{2}$).

$S_{lf}=\int\limits_{-2}^{3}{x^{2}dx}=\left.\frac{x^{3}}{3}\right|_{-2}^{3} = \frac{35}{3}$ (ед.$^{2}$).

Подставим найденное в (**) и получим:

$S=32,5-\frac{35}{3}= \frac{125}{6}$ (ед.$^{2}$).

IV тип: площадь фигуры, ограниченной функцией (-ями), не удовлетворяющей(-ими) условию неотрицательности. Для того, чтобы найти площадь такой фигуры нужно симметрично относительно оси $Ox$ (иными словами, поставить “минусы” перед функциями) отобразить область и с помощью способов, изложенных в типах I – III, найти площадь отображённой области. Эта площадь и будет искомой площадью. Предварительно, возможно, вам придётся найти точки пересечения графиков функций.

Например, найти площадь фигуры, ограниченной графиками функций $y=x^{2}-1$ и $y=0$.

Найдём точки пересечения графиков функций:

т.е. $a=-1$, а $b=1$. Начертим область.

Симметрично отобразим область:

$y=0 \ \Rightarrow \ y=-0=0$

$y=x^{2}-1 \ \Rightarrow \ y= -(x^{2}-1) = 1-x^{2}$.

Получится криволинейная трапеция, ограниченная графиком функции $y=1-x^{2}$ и $y=0$. Это задача на нахождение криволинейной трапеции второго типа. Мы её уже решали. Ответ был такой: $S= 1\frac{1}{3}$ (ед.$^{2}$). Значит, площадь искомой криволинейной трапеции равна:

$S=1\frac{1}{3}$ (ед.$^{2}$).

Загрузка...
Top