Выводы катушки из медного провода. Как проверить катушку зажигания (бобину) на автомобиле

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самого начала, то есть с самых основ и темой сегодняшней статьи будет принцип работы и основные характеристики катушек индуктивности . Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса – и .

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента – катушка индуктивности, в первую очередь, представляет из себя именно катушку:), то есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием – витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название 🙂 Индуктивность – это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри – это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины – уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы – в одной будем пропускать через катушку постоянный ток, а в другой -переменный 🙂

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь.

Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

На первом графике мы видим входное напряжение цепи – изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать. Напряжения на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока .

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость 🙂 Смотрите сами – между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции . Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 – ток уменьшается – скорость изменения тока отрицательная и увеличивается – ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика – там все процессы протекают по такому же принципу 🙂

Кроме того, на графике можно заметить очень важный момент – при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: , title="Rendered by QuickLaTeX.com" height="12" width="39" style="vertical-align: 0px;">, участок 3-4: title="Rendered by QuickLaTeX.com" height="12" width="41" style="vertical-align: 0px;">, ). Таким образом, ЭДС самоиндукции препятствует возрастанию тока (индукционные токи направлены “навстречу” току источника). А на участках 2-3 и 4-5 все наоборот – ток убывает, а ЭДС препятствует убыванию тока (поскольку индукционные токи будут направлены в ту же сторону, что и ток источника и будут частично компенсировать уменьшение тока). И в итоге мы приходим к очень интересному факту – катушка индуктивности оказывает сопротивление переменному току, протекающему по цепи. А значит она имеет сопротивление, которое называется индуктивным или реактивным и вычисляется следующим образом:

Где – круговая частота: . – это .

Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение ? Здесь все на самом деле просто 🙂 По 2-му закону Кирхгофа:

А следовательно:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Как видите ток и напряжение сдвинуты по фазе () друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

При включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между напряжением и током, при этом ток отстает по фазе от напряжения на четверть периода.

Вот и с включением катушки в цепь переменного тока мы разобрались 🙂

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому дальнейший разговор о катушках индуктивности мы будем вести в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

Ребят,не сдам эти задания еданственная 3-ка выйдет!помогайте) 1.Каково сопротивление 1м провода из константана диаметром 0,8 мм? 2.При

намотке катушки из медного провода ее масса возросла на 17,8 г,а сопротивление оказалось равным 34 Ом.Оцените по этим данным длину и площадь поперечного сечения провода?

3.К источнику тока с внут.сопротивлением 1 Ом подключили последовательно амперметр и резистор с сопротивлением 2 Ом.При этом амперметр показывал1 А.Что покажет амперметр,если использовать резистор сопротивлением 3Ом?

4.В цепи вольтметр показывает 3В,а амперметр 0,5 А.При силе тока 1А вольтметр показывает 2,5 В.Каковы ЭДС и внут.сопротивление источника?

5.на заряд 3Кл в электростатич.поле действует сила 6Н.Чему равна напряженность поля?

а.18 н/кл б.0,5 н/кл в.2н/кл г 24 н/кл д.среди ответов нет правильного

6.как изменится напряженность эл.поля точечного заряда,перенесенного из вакуума в среду с диелектрической проницаемостью,равной 81?

а.увеличится в 9 раз б.уменьшится в 9 раз в.увеличится в 81 г.уменьшится в 81 раз д.не изменится

10.При перемещении эл.заряда между точками с разностью потенциалов 8 В силы,действующие на заряд со стороны эл.поля,совершили работу 4 Дж.Чему равна величина заряда?

а.4кл б.32 кл в.0,5 кл г.2 кл д.нет правильного

11.заряд 2кл перемещается из точки с потенциалом 10 В в точку с потенциалом 15 В.Какую работу совершает при этом эл.поле?

а.10 дж б.-10 дж в.0,4 дж г.2,5 дж д.нет правильных

12.при перемещении заряда 3 кл из 1 точки в другую эл.поле совершает работу 6 дж.чему равна разность потенциалов между этими точками?

а.18 В б.2В в.0,5В г.9 В д.нет правильных

13.как изменится электроемкость конденсатора при удалении из него диэлектрика с диэлектрической проницаемостью равной 2?

1) Определите сопротивление нагревательного элемента электрической печи,выполненного из константановой проволоки с площадью поперечного сечения 1 мм в

квадрате и длиной 24.2м. 2)Удлинитель длиной 20 м сделан из медного провода диаметром 1.2 мм. Каково сопротивление удлинителя? Каково падение напряжения на нем, если по нему течет ток силой 10 А?

1)Определите сопротивление нагревательного элемента электрической печи, выполненного из константановой проволоки с площадью поперечного сечения 1мм2 и

длиной 24,2м

2) удлинитель длиной 20 м сделан из медного провода диаметром 1,2мм. Каково сопротивление удлинителя? каково падение напряжения на нем, если по нему течет ток силой 10А

Электрическая проводка выполнена выполнена из медного провода длиной 200 м и сечением 10мм^2. Каково ее сопротивление?Какого сечение необходимо выбрать

Одним из достоинств импульсных металлоискателей, является простота изготовления для них поисковых катушек . При этом с простой катушкой, импульсные металлоискатели имеют хорошую глубину обнаружения. В этой статье будут описаны наиболее простые и доступные способы изготовления поисковых катушек для импульсных металлоискателей своими руками.

Катушки, изготовленные описанными ниже способами изготовления, подойдут практически для всех популярных схем импульсных металлоискателей (Кощей, Клон, Тракер, Пират и др.).

  1. Катушка для импульсного металлоискателя из витой пары

Из провода витая пара, можно получить отличный датчик для импульсных металлоискателей. Такая катушка, будет иметь глубину поиска более 1,5 метра и обладать неплохой чувствительностью к небольшим предметам (Монетам, кольцам и т.д.). Для ее изготовления вам понадобиться провод витая пара (такой провод используется для интернет подключения и есть в продаже на любом рынке и компьютерном магазине). Провод состоит из 4 свитых пар провода без экрана!

Последовательность изготовления катушки для импульсного металлоискателя, из провода витая пара:

  • Отрезаем 2,7 метра провода.
  • Находим середину нашего куска (135 см) и отмечаем его. Затем от него отмеряем по 41 см и также ставим отметки.
  • Соединяем провод по отметкам в кольцо, как показано ниже на рисунке, и фиксируем его скотчем или изолентой.
  • Теперь начинаем обвивать концы вокруг кольца. Делаем это одновременно с обеих сторон, и следим, чтобы витки ложились плотно, без зазоров. В результате вы получаете кольцо из 3ох витков. Вот так у вас должно получится:

  • Полученное кольцо фиксируем скотчем. А концы нашей катушки отгибаем вовнутрь.
  • Затем зачищаем изоляцию проводов, и спаиваем наши провода, в следующей последовательности:

  • Места спайки изолируем при помощи термотрубок или изоленты.

  • Для вывода катушки, берем провод 2*0.5 или 2*0.75 мм в резиновой изоляции, длинной 1,2 метра, и подпаиваем его к оставшимся концам катушки и также изолируем.
  • Затем необходимо подобрать подходящий корпус для катушки, его можно купить готовый, или подобрать подходящего диаметра пластиковую тарелку и т.д.
  • Вкладываем катушку в корпус и фиксируем ее там при помощи термоклея, также фиксируем наши спайки и провода на выводы. Вы должны получить нечто подобное:

  • Затем корпус заклеивается, или если вы использовали пластиковую тарелку или поддон, то его лучше заполнить эпоксидной смолой, это придаст вашей конструкции дополнительную жесткость. Перед тем как заклеивать корпус, или заполнять его эпоксидной смолой, лучше провести промежуточные испытания работоспособности! Так как после склейки, исправить уже нечего не получится!
  • Для крепления катушки к штанге металлоискателя, можно использовать вот такой кронштейн (стоит он совсем недорого), или изготовить его подобие самостоятельно.

  • Ко второму концу провода подпаиваем разъем, и наша катушка готова к применению.

При испытании такой катушки с металлоискателей Кощей 5И были получены следующие данные:

  • Ворота железные – 190 см
  • Каска – 85 см
  • Монета 5 кос СССР – 30 см.
  1. Большая катушка для импульсного металлоискателя своими руками.

Тут мы опишем способ изготовления глубинной катушки 50*70 см, для импульсных металлоискателей . Такая катушка хорошо подойдет для поиска крупных металлических целей на большой глубине, но она не пригодна для поиска мелкого металла.

Итак, процесс изготовления катушки для импульсных металлоискателей:

  • Изготавливаем лекало. Для этого в любой графической программе, рисуем наше лекало, и распечатываем его в размере 1:1.

  • При помощи лекала, чертим контур нашей катушки на листе фанеры или ДСП.
  • Вбиваем по периметру гвозди, или вкручиваем шурупы (шурупы необходимо обмотать изолентой, чтобы они не царапали провод), с шагом 5 – 10 см.
  • Затем наматываем на них обмотку (для металлоискателя Клон 18 -19 витков) обмоточного эмаль провода 0.7-0.8мм, также можно использовать многожильный изолированный провод, но тогда вес катушки получиться немного больше.
  • Между гвоздиками, обмотку стягиваем кабельными стяжками, или скотчем. И промазываем свободные участки эпоксидной смолой.

  • После застывания эпоксидной смолы, вынимаем гвозди и снимаем катушку. Удаляем наши стяжки. К концам катушки подпаиваем выводы из многожильного провода длинной 1,5 метра. И обматываем катушку стеклотканью, с эпоксидной смолой.

  • Для изготовления крестовины, можно использовать полипропиленовую трубу диаметром 20 мм. Такие трубы продаются под названием «Трубы под термосварку».

  • Работать с полипропиленом можно с помощью промышленного фена. Нагревать его надо очень осторожно, т.к. при 280 градусах материал разлагается. Итак, берём два отрезка трубы, у одного из них нагреваем середину, проковыриваем дырку насквозь, расширяем её так, чтобы в неё пролезла вторая труба, нагреваем середину этой самой второй трубы (продолжая поддерживать середину первой в горячем состоянии) и вставляем одно в другое. Не смотря на сложное описание, особой ловкости это не требует — у меня получилось с первого раза. Два разогретых куска полипропилена склеиваются «насмерть», об их прочности можно не беспокоиться.
  • Разогреваем кончики крестовины и надрезаем их ножницами (разогретый полипропилен неплохо режется) с целью получения «выемок» для обмотки. Затем вставляем крестовину внутрь обмотки и, поочередно нагревая кончики крестовины с выемками, «запечатываем» в последних обмотку. При надевании обмотки на крестовину можно пропустить кабель через одну из труб крестовины.
  • Из отрезка такой же трубы изготавливаем пластинку (методом плющенья в горячем состоянии), изгибаем её буквой » П » и привариваем (опять же в горячем виде) к середине крестовины. Сверлим отверстия под всеми любимые болты от унитазной крышки.
  • С целью придания дополнительной прочности и герметичности заделываем оставшиеся щели всевозможными герметиками, заматываем сомнительные места стеклотканью с эпоксидкой, наконец, заматываем всё изолентой.

Вариант I

1. Кто открыл явление электромагнитной индукции?
а) X. Эрстед; б) Ш. Кулон;

в) А. Вольта; г) А. Ампер;

д) М. Фарадей; е) Д. Максвелл.

2. Выводы катушки из медного провода присоединены к чувствительному

ЭДС электромагнитной индукции в катушке?

    в катушку вставляется постоянный магнит;»

    из катушки вынимается постоянный магнит;

    постоянный магнит вращается вокруг своей продольной оси внутри катушки.

а) только в случае 1; б) только в случае 2;

в) только в случае 3; г) в случаях 1 и 2;

д) в случаях 1, 2 и 3.

3. Как называется физическая величина, равная произведению модуля В
индукции магнитного поля на площадь S поверхности, пронизываемой маг-
нитным полем, и косинус угла
α между вектором В индукции и нормалью
n к этой поверхности?

а) индуктивность; б) магнитный поток;

в) магнитная индукция; г) самоиндукция;

д) энергия магнитного поля.


4. Как называется единица измерения магнитного потока?
а)тесла; б) вебер;

5.В точках 1. 2. 3 показано расположение магнитных стрелок (рис 68) Нарисуйте, как в этих точках направлен вектор магнитной индукции г) генри. В точках 1, 2, 3 показано расположение магнитных стрелок (рис. 68). Нарисуйте, как в этих точках направлен вектор магнитной индукции.

6Линии магнитной индукции поля идут слева направо параллельно плоскости листа, проводник с током перпендикулярен плоскости листа, и ток направлен в плоскость тетради. Вектор силы Ампера, действующей на проводник, направлен...

а) вправо; б) влево;

в) вверх; г) вниз.

Вариант II

1. Как называется явление возникновения электрического тока в замкну-
том контуре при изменении магнитного потока через контур?

а) электростатическая индукция; б) явление намагничивания;

в) сила Ампера; г) сила Лоренца;

д) электролиз; е) электромагнитная индукция.

2. Выводы катушку из медного провода присоединены к чувствительному
гальванометру. В каком из перечисленных опытов гальванометр обнаружит
возникновение ЭДС электромагнитной индукции в катушке?

    в катушку вставляется постоянный магнит;

    катушка надевается на магнит;

    катушка вращается вокруг магнита, находящегося внутри нее.

а) в случаях 1, 2 и 3; б) в случаях 1 и 2;

в) только в случае 1; г) только в случае 2;

д)только в случае 3.

3. Каким из приведенных ниже выражений определяется магнитный поток?

a) BS cosα б) ∆Ф/∆t

B)qVBsinα; г) qVBI;

д) IBl sin α .

4. Единицей изменения какой физической величины является 1 вебер?
а) индукция магнитного поля; б) электроемкости;

в) самоиндукции; г) магнитного потока;

д) индуктивности.

5. Нарисуйте картину линий магнитной индукции при
протекании тока через катушку (рис. 69), намотанную на
картонный цилиндр. Как будет меняться эта картина при:

а) увеличении силы тока в катушке?

б) уменьшении числа витков, намотанных на катушку?

в) в ведение в нее железного сердечника?

6. Проводник с током лежит в плоскости листа. По проводнику снизу проходит ток, и на него вверх действует сила Ампера, направленная от листа. Это может происходить, если северный полюс стержневого магнита поднесли...

а) слева; б) справа;

в) с передней стороны листа; г) с обратной стороны листа.

Для бензинового ДВС система зажигания является одной из определяющих, хотя в машине сложно выделить какой-то главный узел. Без мотора не поедешь, но и без колеса это тоже невозможно.

Катушка зажигания создает высокое напряжение, без которого невозможно образование искры и воспламенение топливо-воздушной смеси в цилиндрах бензинового двигателя.

Коротко о зажигании

Чтобы понять зачем в автомобиле бобина (это народное название), и какое участие она принимает в обеспечении движения, надо хотя бы обобщенно понять устройство систем зажигания.

Упрощенная схема работы бобины приведена ниже.

Плюсовой вывод катушки подключен к положительной клемме аккумулятора, а другим выводом она соединяется с распределителем напряжения. Такая схема подключения является классической и широко применяется на машинах семейства ВАЗ. Для полноты картины необходимо сделать ряд уточнений:

  1. Распределитель напряжения является неким диспетчером, подающим напряжение на тот цилиндр, в котором произошла фаза сжатия и должны воспламениться пары бензина.
  2. Работой катушки зажигания управляет коммутатор напряжения, его исполнение может быть механическим или электронным (бесконтактным).

Механические устройства использовались в старых автомобилях: на ВАЗ 2106 и подобных, но сейчас они практически полностью вытеснены электронными.

Устройство и работа бобины

Современная бобина является упрощенной версией индукционной катушки Румкорфа. Она была названа в честь изобретателя немецкого происхождения – Генриха Румкорфа, который первым запатентовал в 1851 году устройство, преобразовывающее постоянное низкое напряжение в переменное высокое.

Чтобы понять принцип работы, нужно знать устройство катушки зажигания и основы радиоэлектроники.

Это традиционная, общая катушка зажигания ВАЗ, применяемая в течение длительного времени и на многих других автомобилях. Фактически это импульсный высоковольтный трансформатор. На сердечнике, предназначенном для усиления магнитного поля, тонким проводом намотана вторичная обмотка, она может содержать до тридцати тысяч витков провода.

Поверх вторичной обмотки находится первичная из более толстой проволоки и с меньшим количеством витков (100-300).

Обмотки с одних концов соединены между собой, второй конец первичной подсоединяется к аккумуляторы, вторичная обмотка свободным концом подключена к распределителю напряжения. Общей точкой обмотки катушки подключены к коммутатору напряжения. Всю эту конструкцию закрывает защитный корпус.

Через «первичку» в исходном состоянии протекает постоянный ток. Когда нужно образовать искру, цепь разрывается коммутатором или трамблером. Это приводит к образованию высокого напряжения во вторичной обмотке. Напряжение поступает на свечу нужного цилиндра, где и образуется искра, вызывающая сгорание топливной смеси. Для соединения свечей с распределителем использовались высоковольтные провода.

Конструкция с одним выводом не является единственно возможной, существуют и другие варианты.

  • Двухискровые. Сдвоенная система применяется для цилиндров, которые работают в одной фазе. Предположим, в первом цилиндре происходит сжатие и искра нужна для воспламенения, а в четвертом фаза продувки и там образуется холостая искра.
  • Трехискровые. Принцип работы как у двухвыводной, только используются подобные на 6 цилиндровых двигателях.
  • Индивидуальные. Каждая свеча оснащена собственной катушкой зажигания. В данном случае обмотки поменяны местами — первичная находится под вторичной.

Как проверить катушку зажигания

Основной параметр, по которому определяется работоспособность бобины, является сопротивление обмоток. Существуют усредненные показатели, говорящие о ее исправности. Хотя не всегда отклонения от нормы являются показателем неисправности.

С помощью мультиметра

С помощью мультиметра можно проверить катушку зажигания по 3 параметрам:

  1. сопротивление первичной обмотки;
  2. сопротивление вторичной обмотки;
  3. наличие короткого замыкания (пробой изоляции).

Следует учесть, что таким образом можно проверить только индивидуальную катушку зажигания. Сдвоенные устроены иначе, и необходимо знать схему вывода «первички» и «вторички».


Первичную обмотку проверяем присоединив щупы к контактам Б и К.

Измеряя «вторичку» подключаем один щуп к контакту Б, а второй к высоковольтному выводу.

Изоляцию замеряют через клемму Б и корпус катушки. Показания прибора должен быть не ниже 50 Мом.

Далеко не всегда у просто автолюбителя под рукой имеется мультиметр и опыт его использования, в дальней дороге проверка катушки зажигания указанным способом также недоступна.

Другие способы

Еще одним способом, особенно актуальным для старых автомобилей, в том числе и ВАЗах, будет проверка искры. Для этого центральный высоковольтный провод помещается на расстояние 5-7 мм от корпуса двигателя. Если при попытках завести машину проскакивает синяя или ярко-фиолетовая искра — бобина работает нормально. Если цвет искры более светлый, желтый, или она отсутствует вовсе, это может служить подтверждением ее поломки, либо неисправности провода.

Есть простой способ проверить систему с индивидуальными катушками. Если двигатель троит, нужно просто поочередно отсоединять питание катушек на заведенном двигателе. Отключили разъем и звук работы поменялся (машина задвоила) – катушка в порядке. Звук остался прежним – искра на свечу в этом цилиндре не поступает.

Правда проблема может быть и в самой свече, поэтому для чистоты эксперимента следует поменять местами свечу из этого цилиндра с любой другой.

Подключение катушки зажигания

Если при демонтаже вы не запомнили и не отметили какой провод к какой клемме шел, схема подключения катушки зажигания следующая. На клемму со знаком + или буквой Б (батарея) подается питание от аккумулятора, на букву К подключается коммутатор. Цвета проводов в автомобилях могут отличаться, поэтому проще всего отследить какой куда идет.

Правильность подсоединения важна, и в случае нарушения полярности можно испортить саму бобину, трамблер, коммутатор.

Вывод

Одним из важных узлов в автомобиле является бобина, создающая высокое напряжение для образования искры. Если в работе двигателя появляются провалы, он начинает троить и просто нестабильно работать – причиной может быть в ней. Поэтому важно знать, как проверить катушку зажигания правильно, а при необходимости и дедовским методом, в полевых условиях.

Загрузка...
Top