В геодезии за ось абсцисс принимается направление среднего осевого меридиана зоны, а за ось ординат – направление экватора. Что такое ордината? Что значит абсцисса равна ординате

Этой точки на оси X’Х в прямоугольной системе координат . Величина абсциссы точки A равна длине отрезка OB (см. рисунок). Если точка B принадлежит положительной полуоси OX , то абсцисса имеет положительное значение. Если точка B принадлежит отрицательной полуоси X’O , то абсцисса имеет отрицательное значение. Если точка A лежит на оси Y’Y , то её абсцисса равна нулю .

В прямоугольной системе координат луч (прямая) X’X называется «осью абсцисс». При построении графиков функций , ось абсцисс обычно используется как область определения функции .

Этимология

См. также

Напишите отзыв о статье "Абсцисса"

Примечания

Ссылки

  • Абсцисса // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М . : Советская энциклопедия, 1969-1978.

Отрывок, характеризующий Абсцисса

– Однако я тебя стесняю, – сказал он ему тихо, – пойдем, поговорим о деле, и я уйду.
– Да нет, нисколько, сказал Борис. А ежели ты устал, пойдем в мою комнатку и ложись отдохни.
– И в самом деле…
Они вошли в маленькую комнатку, где спал Борис. Ростов, не садясь, тотчас же с раздраженьем – как будто Борис был в чем нибудь виноват перед ним – начал ему рассказывать дело Денисова, спрашивая, хочет ли и может ли он просить о Денисове через своего генерала у государя и через него передать письмо. Когда они остались вдвоем, Ростов в первый раз убедился, что ему неловко было смотреть в глаза Борису. Борис заложив ногу на ногу и поглаживая левой рукой тонкие пальцы правой руки, слушал Ростова, как слушает генерал доклад подчиненного, то глядя в сторону, то с тою же застланностию во взгляде прямо глядя в глаза Ростову. Ростову всякий раз при этом становилось неловко и он опускал глаза.
– Я слыхал про такого рода дела и знаю, что Государь очень строг в этих случаях. Я думаю, надо бы не доводить до Его Величества. По моему, лучше бы прямо просить корпусного командира… Но вообще я думаю…
– Так ты ничего не хочешь сделать, так и скажи! – закричал почти Ростов, не глядя в глаза Борису.
Борис улыбнулся: – Напротив, я сделаю, что могу, только я думал…
В это время в двери послышался голос Жилинского, звавший Бориса.
– Ну иди, иди, иди… – сказал Ростов и отказавшись от ужина, и оставшись один в маленькой комнатке, он долго ходил в ней взад и вперед, и слушал веселый французский говор из соседней комнаты.

ГЛАВА VIII

КООРДИНАТЫ И ПРОСТЕЙШИЕ ГРАФИКИ

§ 41. Оси координат. Абсцисса и ордината точки на плоскости.

1258. Построить прямоугольную систему координат и отметить точки, имеющие следующие координаты:

1) х = 5, у = 3; 2) х = - 4, у = 6;

3) х = - 3, у =- 4; 4) х = 5, у = -2.

1259. Построить точки, имеющие следующие координаты:

1) х = 8 1 / 2 , у = - 5 1 / 2 2) х = - 6,5, у = 4,5;

3) х = -2,8, у =-3,2; 4) х = 7,3, у =8,4;

5) A (-3 3 / 4 ; 5 1 / 2); "6) В (-0,8; - l,4). ,

1260. 1) По данным координатам построить точки и указать, при каких условиях точки расположены на оси Х -ов или на оси Y -ов.

1) х = 4, у = 0;

2) х =- 2, у = 0\

3) х = 0, у = 3;

4) х = 0, у =-4;

5) х = 0, у = 0.

2) Определить и записать координаты каждой точки, обозначенной на чертеже 35.

1261. Построить отрезок прямой, Соединяющий две точки с координатами:

1) A(5; 4) и В (-3;-2); 2) С (-4; 2) и D (5; - 3).

1262. 1) Построить треугольник по координатам его вершин A, В и С:

A (4; 5); В (8; 2); С (- 6; 3).

2) Построить четырёхугольник по координатам его вершин А, В, С и D:

А (- 3; 8); B (10; 6); С (5; -5); D (-7; -4).

1263. 1) Дана точка А (4; 6). Построить точку В, симметричную точке А относительно оси абсцисс ОХ , и найти координаты этой точки.

2) Построить ещё несколько точек, расположенных симметрично относительно оси абсцисс.

3) Показать, что если точки A и В симметричны относительно оси абсцисс, то их абсциссы равны, а ординаты отличаются только знаками.

1264. 1) Построить точку A(4; 6) и точку В, симметричную точке А относительно оси ординат. Чем отличаются абсциссы и ординаты этих точек?

2) Построить несколько пар точек, симметричных относительно оси ординат OY , найти их координаты и показать, что если точки A и В симметричны относительно оси ординат, то их ординаты равны, а абсциссы отличаются только знаками.

1265. 1) Построить точку A (3; 7) и точку В, симметричную точке A относительно начала координат. Чем отличаются абсциссы и ординаты этих точек?

2) Построить несколько пар точек, симметричных относительно начала координат и показать, что координаты каждой пары таких точек отличаются только знаками.

1266. На плоскости расположены точки:

A(1; 3); В(2; 5); С(1; -3); D(-2; -5); Е(-1; 3).

Определить, какие пары этих точек симметричны относительно: 1) оси абсцисс; 2) оси ординат; 3) начала координат.

1267. 1) Построить четырёхугольник по следующим координатам его вершин:"

A(0; 0); В(1; 3); С (8; 5); D(9; 1).

Указание. Взять за единицу масштаба 1 см.

2) Из вершины А провести диагональ четырёхугольника и путём непосредственного измерения основания и высот полученных треугольников (с точностью до 0,1 см.) вычислить их площадь и площадь всего четырёхугольника.

3) Провести из вершины В вторую диагональ и вторично найти площадь четырёхугольника, выполнив соответствующие измерения и вычисления.

4) Вычислить среднее арифметическое двух полученных результатов и округлить, ответ до двух значащих цифр.

5) Найти абсолютную и относительную погрешности полученного ответа, зная, что площадь данного четырёхугольника равна 28 см 2 .

1268. Результаты измерений температуры воздуха в течение суток записаны в следующей таблице:

1) По данным таблицы построить график изменения температуры воздуха в течение суток.

2) По графику определить температуру воздуха: в 3 часа; в 9 час; в 13 час; в 21 час.

3) Найти по графику, в какое время температура воздуха была равна: -1°; -4°; + 2°; +5°.

4) Установить по графику, в какой промежуток времени температура поднималась, опускалась.

5) Найти по графику, когда в течение суток температура была самой высокой, самой низкой.

1269. При свободном падении тела скорость в любой момент времени определяется формулой v = gt , где v - скорость в метрах в секунду, g ≈ 9,81 м/сек 2 , t - время в секундах.

Построить график изменения скорости падающего тела в зависимости от времени падения.

1270. Из наблюдений над изменением температуры воды с возрастанием глубины в экваториальной части Тихого океана получены следующие данные:

1) Построить график изменения температуры воды с изменением глубины.

2) Определить, на какой глубине температура воды понижается наиболее быстро? наиболее медленно?

1271. При начале нагревания вода в кипятильнике имела температуру 8°. При нагревании температура воды повышалась в каждую минуту на 2°.

1).Написать формулу, выражающую изменение температуры у воды в зависимости от времени t её нагревания.

2) Составить таблицу значений у за время от 1 минуты до 10 минут.

3) Построить график изменения температуры воды в зависимости от изменения времени нагревания.i

4) Найти по графику с точностью до 1: температуру воды через 14 минут после нагревания; через сколько минут после начала нагревания температура воды достигнет 20°? 35°? Проверить вычислением по формуле.

В повседневной жизни часто можно услышать фразу: «Оставь мне свои координаты». В ответ человек обычно оставляет свой адрес или номер телефона, то есть данные, по которым его можно найти.

Координаты могут обозначаться самыми разными наборами цифр или букв.

Например, номер автомобиля — это координаты, потому что по номеру машины можно определить из какого она города и кто ёё владелец.

Важно!

Координаты — это набор данных, по которому определяется положение того или иного объекта.

Примерами координат являются: номер вагона и места в поезде, широта и долгота на географической карте, запись положения фигуры на шахматной доске, положение точки на числовой оси и т.д.

Всегда, когда мы по определенным правилам однозначно обозначаем какой-то объект набором букв, чисел или других символов, мы задаём координаты объекта.

Декартова система координат

Французкий математик Рене Декарт (1596-1650) предложил задавать положение точки на плоскости с помощью двух координат.

Для нахождения координат нужны ориентиры, от которых ведётся отсчёт.

  • На плоскости такими ориентирами будут служить две числовые оси. На чертеже обычно первую ось рисуют горизонтально, её называют осью АБСЦИСС и обозначают буквой «X », записывают ось «Ox ». Положительное направление на оси абсцисс выбирают слева направо и показывают стрелкой.
  • Вторую ось проводят вертикально, её называют осью ОРДИНАТ и обозначают буквой «Y », записывают ось «Oy ». Положительное направление на оси ординат выбирают снизу вверх и показывают стрелкой.

Оси взаимно перпендикулярны (т.е. угол между ними равен 90° ) и пересекаются в точке, которую обозначают «O ». Точка «O » является началом отсчёта для каждой из осей.

Запомните!

Система координат — это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчёта для каждой из них.

Координатные оси — это прямые, образующие систему координат.

Ось абсцисс «Ox » — горизонтальная ось.

Ось ординат «Oy » — вертикальная ось.

Координатная плоскость — плоскость, в которой построена система координат. Обозначается плоскость как «x0y ».

Обращаем ваше внимание на выбор длины единичных отрезков по осям.

Цифры, обозначающие числовые значения на осях можно располагать как справа, так и слева от оси «Oy ». Цифры на оси «Ox », как правило, пишут внизу под осью.

Обычно единичный отрезок на оси «0y » равен единичному отрезку на оси «0x ». Но бывают случаи, когда они не равны друг другу.

Оси координат делят плоскость на 4 угла, которые называют координатными четвертями . Четверть, образованная положительными полуосями (правый верхний угол), считают первой I .

Отсчитываем четверти (или координатные углы) против часовой стрелки.


abscissa - отрезок) точки A называется координата этой точки на оси X’X в прямоугольной системе координат . Величина абсциссы точки A равна длине отрезка OB (см. рис. 1). Если точка B принадлежит положительной полуоси OX, то абсцисса имеет положительное значение. Если точка B принадлежит отрицательной полуоси X’O, то абсцисса имеет отрицательное значение. Если точка A лежит на оси Y’Y, то её абсцисса равна нулю.

В прямоугольной системе координат ось X’X называется «осью абсцисс».

Правописание

Обратите внимание на написание: Абс цисса, но не абцисса и не абсциса .

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Ось абсцисс" в других словарях:

    ось абсцисс - Горизонтальная ось в декартовой системе координат. Тематики информационные технологии в целом EN abscise axishorizontal axisX axis … Справочник технического переводчика

    ось абсцисс - abscisių ašis statusas T sritis automatika atitikmenys: angl. abscissa axis vok. Abszissenachse, f rus. ось абсцисс, f pranc. axe d abscisses, m … Automatikos terminų žodynas

    ось абсцисс - abscisių ašis statusas T sritis fizika atitikmenys: angl. abscissa axis vok. Abszissenachse, f rus. ось абсцисс, f pranc. axe d’abscisses, m … Fizikos terminų žodynas

    Ось (слово «ось» происходит от древнерусского «ость» долгий усик на плевеле каждого зерна колосовых растений или волос в пушном товаре) понятие некой центральной прямой, в том числе воображаемой прямой (линии): В технике:… … Википедия

    ОСЬ - (1) в прикладной механике стержень, опирающийся на опоры и поддерживающий вращающиеся части машин (колёса вагонов) или механизмов (зубчатые колёса часов). В отличие от (см.) О. не передаёт полезного крутящего момента (см. (5)), а работает в… … Большая политехническая энциклопедия

    определение - 2.7 определение: Процесс выполнения серии операций, регламентированных в документе на метод испытаний, в результате выполнения которых получают единичное значение. Источник … Словарь-справочник терминов нормативно-технической документации

    - (от греч. στροφή поворот) алгебраическая кривая 3 го порядка. Строится так (см. Рис. 1): Рис. 1 … Википедия

    Раздел геометрии, который исследует простейшие геометрические объекты средствами элементарной алгебры на основе метода координат. Создание аналитической геометрии обычно приписывают Р.Декарту, изложившему ее основы в последней главе своего… … Энциклопедия Кольера

    Рис. 1. Построение циссоиды. Синяя и красная линии ветви циссоиды. Циссоида Диокла плоская алгебраическая кривая третьего порядка. В декартовой системе координат, где ось абсцисс направлена по … Википедия

    Циссоида Диокла плоская алгебраическая кривая третьего порядка. В декартовой системе координат, где ось абсцисс направлена по OX, а ось ординат по OY, на отрезке OA = 2a, как на диаметре строится вспомогательная окружность. В точке A проводится… … Википедия

Если вы находитесь в некоторой нулевой точке и размышляете над тем, сколько единиц расстояния нужно пройти строго вперёд, а затем - строго вправо, чтобы оказаться в некоторой другой точке, то вы уже пользуетесь прямоугольной декартовой системой координат на плоскости. А если точка находится выше плоскости, на которой вы стоите, и к вашим расчётам добавляется подъём к точке по лестнице строго вверх также на определённое число единиц расстояния, то вы уже пользуетесь прямоугольной декартовой системой координат в пространстве.

Упорядоченная система двух или трёх пересекающихся перпендикулярных друг другу осей с общим началом отсчёта (началом координат) и общей единицей длины называется прямоугольной декартовой системой координат .

С именем французского математика Рене Декарта (1596-1662) связывают прежде всего такую систему координат, в которой на всех осях отсчитывается общая единица длины и оси являются прямыми. Помимо прямоугольной существует общая декартова система координат (аффинная система координат ). Она может включать и не обязательно перпендикулярные оси. Если же оси перпендикулярны, то система координат является прямоугольной.

Прямоугольная декартова система координат на плоскости имеет две оси, а прямоугольная декартова система координат в пространстве - три оси. Каждая точка на плоскости или в пространстве определяется упорядоченным набором координат - чисел в соответствии единице длины системы координат.

Заметим, что, как следует из определения, существует декартова система координат и на прямой, то есть в одном измерении. Введение декартовых координат на прямой представляет собой один из способов, с помощью которого любой точке прямой ставится в соответствие вполне определённое вещественное число, то есть координата.

Метод координат, возникший в работах Рене Декарта, ознаменовал собой революционную перестройку всей математики. Появилась возможность истолковывать алгебраические уравнения (или неравенства) в виде геометрических образов (графиков) и, наоборот, искать решение геометрических задач с помощью аналитических формул, систем уравнений. Так, неравенство z < 3 геометрически означает полупространство, лежащее ниже плоскости, параллельной координатной плоскости xOy и находящейся выше этой плоскости на 3 единицы.

С помощью декартовой системы координат принадлежность точки заданной кривой соответствует тому, что числа x и y удовлетворяют некоторому уравнению. Так, координаты точки окружности с центром в заданной точке (a ; b ) удовлетворяют уравнению (x - a )² + (y - b )² = R ² .

Прямоугольная декартова система координат на плоскости

Две перпендикулярные оси на плоскости с общим началом и одинаковой масштабной единицей образуют декартову прямоугольную систему координат на плоскости . Одна из этих осей называется осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат . Эти оси называются также координатными осями. Обозначим через M x и M y соответственно проекции произвольной точки М на оси Ox и Oy . Как получить проекции? Проведём через точку М Ox . Эта прямая пересекает ось Ox в точке M x . Проведём через точку М прямую, перпендикулярную оси Oy . Эта прямая пересекает ось Oy в точке M y . Это показано на рисунке ниже.

x и y точки М будем называть соответственно величины направленных отрезков OM x и OM y . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 и y = y 0 - 0 . Декартовы координаты x и y точки М абсциссой и ординатой . Тот факт, что точка М имеет координаты x и y , обозначается так: M (x , y ) .

Координатные оси разбивают плоскость на четыре квадранта , нумерация которых показана на рисунке ниже. На нём же указана расстановка знаков координат точек в зависимости от их расположения в том или ином квадранте.

Помимо декартовых прямоугольных координат на плоскости часто рассматривается также полярная система координат. О способе перехода от одной системы координат к другой - в уроке полярная система координат .

Прямоугольная декартова система координат в пространстве

Декартовы координаты в пространстве вводятся в полной аналогии с декартовыми координатами на плоскости.

Три взаимно перпендикулярные оси в пространстве (координатные оси) с общим началом O и одинаковой масштабной единицей образуют декартову прямоугольную систему координат в пространстве .

Одну из указанных осей называют осью Ox , или осью абсцисс , другую - осью Oy , или осью ординат , третью - осью Oz , или осью аппликат . Пусть M x , M y M z - проекции произвольной точки М пространства на оси Ox , Oy и Oz соответственно.

Проведём через точку М Ox Ox в точке M x . Проведём через точку М плоскость, перпендикулярную оси Oy . Эта плоскость пересекает ось Oy в точке M y . Проведём через точку М плоскость, перпендикулярную оси Oz . Эта плоскость пересекает ось Oz в точке M z .

Декартовыми прямоугольными координатами x , y и z точки М будем называть соответственно величины направленных отрезков OM x , OM y и OM z . Величины этих направленных отрезков рассчитываются соответственно как x = x 0 - 0 , y = y 0 - 0 и z = z 0 - 0 .

Декартовы координаты x , y и z точки М называются соответственно её абсциссой , ординатой и аппликатой .

Попарно взятые координатные оси располагаются в координатных плоскостях xOy , yOz и zOx .

Задачи о точках в декартовой системе координат

Пример 1.

A (2; -3) ;

B (3; -1) ;

C (-5; 1) .

Найти координаты проекций этих точек на ось абсцисс.

Решение. Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, и ординату (координату на оси Oy , которую ось абсцисс пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось абсцисс:

A x (2; 0) ;

B x (3; 0) ;

C x (-5; 0) .

Пример 2. В декартовой системе координат на плоскости даны точки

A (-3; 2) ;

B (-5; 1) ;

C (3; -2) .

Найти координаты проекций этих точек на ось ординат.

Решение. Как следует из теоретической части этого урока, проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, и абсциссу (координату на оси Ox , которую ось ординат пересекает в точке 0), равную нулю. Итак получаем следующие координаты данных точек на ось ординат:

A y (0; 2) ;

B y (0; 1) ;

C y (0; -2) .

Пример 3. В декартовой системе координат на плоскости даны точки

A (2; 3) ;

B (-3; 2) ;

C (-1; -1) .

Ox .

Ox Ox Ox , будет иметь такую же абсциссу, что и данная точка, и ординату, равную по абсолютной величине ординате данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Ox :

A" (2; -3) ;

B" (-3; -2) ;

C" (-1; 1) .

Решить задачи на декартову систему координат самостоятельно, а затем посмотреть решения

Пример 4. Определить, в каких квадрантах (четвертях, рисунок с квадрантами - в конце параграфа "Прямоугольная декартова система координат на плоскости") может быть расположена точка M (x ; y ) , если

1) xy > 0 ;

2) xy < 0 ;

3) x y = 0 ;

4) x + y = 0 ;

5) x + y > 0 ;

6) x + y < 0 ;

7) x y > 0 ;

8) x y < 0 .

Пример 5. В декартовой системе координат на плоскости даны точки

A (-2; 5) ;

B (3; -5) ;

C (a ; b ) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Продолжаем решать задачи вместе

Пример 6. В декартовой системе координат на плоскости даны точки

A (-1; 2) ;

B (3; -1) ;

C (-2; -2) .

Найти координаты точек, симметричных этим точкам относительно оси Oy .

Решение. Поворачиваем на 180 градусов вокруг оси Oy направленный отрезок, идущий от оси Oy до данной точки. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно оси Oy , будет иметь такую же ординату, что и данная точка, и абсциссу, равную по абсолютной величине абсциссе данной точки, и противоположную ей по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно оси Oy :

A" (1; 2) ;

B" (-3; -1) ;

C" (2; -2) .

Пример 7. В декартовой системе координат на плоскости даны точки

A (3; 3) ;

B (2; -4) ;

C (-2; 1) .

Найти координаты точек, симметричных этим точкам относительно начала координат.

Решение. Поворачиваем на 180 градусов вокруг начала координат направленный отрезок, идущий от начала координат к данной точке. На рисунке, где обозначены квадранты плоскости, видим, что точка, симметричная данной относительно начала координат, будет иметь абсциссу и ординату, равные по абсолютной величине абсциссе и ординате данной точки, но противоположные им по знаку. Итак получаем следующие координаты точек, симметричных этим точкам относительно начала координат:

A" (-3; -3) ;

B" (-2; 4) ;

C (2; -1) .

Пример 8.

A (4; 3; 5) ;

B (-3; 2; 1) ;

C (2; -3; 0) .

Найти координаты проекций этих точек:

1) на плоскость Oxy ;

2) на плоскость Oxz ;

3) на плоскость Oyz ;

4) на ось абсцисс;

5) на ось ординат;

6) на ось апликат.

1) Проекция точки на плоскость Oxy расположена на самой этой плоскости, а следовательно имеет абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxy :

A xy (4; 3; 0) ;

B xy (-3; 2; 0) ;

C xy (2; -3; 0) .

2) Проекция точки на плоскость Oxz расположена на самой этой плоскости, а следовательно имеет абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную нулю. Итак получаем следующие координаты проекций данных точек на Oxz :

A xz (4; 0; 5) ;

B xz (-3; 0; 1) ;

C xz (2; 0; 0) .

3) Проекция точки на плоскость Oyz расположена на самой этой плоскости, а следовательно имеет ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную нулю. Итак получаем следующие координаты проекций данных точек на Oyz :

A yz (0; 3; 5) ;

B yz (0; 2; 1) ;

C yz (0; -3; 0) .

4) Как следует из теоретической части этого урока, проекция точки на ось абсцисс расположена на самой оси абсцисс, то есть оси Ox , а следовательно имеет абсциссу, равную абсциссе самой точки, а ордината и апликата проекции равны нулю (поскольку оси ординат и апликат пересекают ось абсцисс в точке 0). Получаем следующие координаты проекций данных точек на ось абсцисс:

A x (4; 0; 0) ;

B x (-3; 0; 0) ;

C x (2; 0; 0) .

5) Проекция точки на ось ординат расположена на самой оси ординат, то есть оси Oy , а следовательно имеет ординату, равную ординате самой точки, а абсцисса и апликата проекции равны нулю (поскольку оси абсцисс и апликат пересекают ось ординат в точке 0). Получаем следующие координаты проекций данных точек на ось ординат:

A y (0; 3; 0) ;

B y (0; 2; 0) ;

C y (0; -3; 0) .

6) Проекция точки на ось апликат расположена на самой оси апликат, то есть оси Oz , а следовательно имеет апликату, равную апликате самой точки, а абсцисса и ордината проекции равны нулю (поскольку оси абсцисс и ординат пересекают ось апликат в точке 0). Получаем следующие координаты проекций данных точек на ось апликат:

A z (0; 0; 5) ;

B z (0; 0; 1) ;

C z (0; 0; 0) .

Пример 9. В декартовой системе координат в пространстве даны точки

A (2; 3; 1) ;

B (5; -3; 2) ;

C (-3; 2; -1) .

Найти координаты точек, симметричных этим точкам относительно:

1) плоскости Oxy ;

2) плоскости Oxz ;

3) плоскости Oyz ;

4) оси абсцисс;

5) оси ординат;

6) оси апликат;

7) начала координат.

1) "Продвигаем" точку по другую сторону оси Oxy Oxy , будет иметь абсциссу и ординату, равные абсциссе и ординате данной точки, и апликату, равную по величине апликате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxy :

A" (2; 3; -1) ;

B" (5; -3; -2) ;

C" (-3; 2; 1) .

2) "Продвигаем" точку по другую сторону оси Oxz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oxz , будет иметь абсциссу и апликату, равные абсциссе и апликате данной точки, и ординату, равную по величине ординате данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oxz :

A" (2; -3; 1) ;

B" (5; 3; 2) ;

C" (-3; -2; -1) .

3) "Продвигаем" точку по другую сторону оси Oyz на то же расстояние. По рисунку, отображающему координатное пространство, видим, что точка, симметричная данной относительно оси Oyz , будет иметь ординату и апликату, равные ординате и апликате данной точки, и абсциссу, равную по величине абсциссе данной точки, но противоположную ей по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно плоскости Oyz :

A" (-2; 3; 1) ;

B" (-5; -3; 2) ;

C" (3; 2; -1) .

По аналогии с симметричными точками на плоскости и точками пространства, симметричными данным относительно плоскостей, замечаем, что в случае симметрии относительно некоторой оси декартовой системы координат в пространстве, координата на оси, относительно которой задана симметрия, сохранит свой знак, а координаты на двух других осях будут теми же по абсолютной величине, что и координаты данной точки, но противоположными по знаку.

4) Свой знак сохранит абсцисса, а ордината и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси абсцисс:

A" (2; -3; -1) ;

B" (5; 3; -2) ;

C" (-3; -2; 1) .

5) Свой знак сохранит ордината, а абсцисса и апликата поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси ординат:

A" (-2; 3; -1) ;

B" (-5; -3; -2) ;

C" (3; 2; 1) .

6) Свой знак сохранит апликата, а абсцисса и ордината поменяют знаки. Итак, получаем следующие координаты точек, симметричных данным относительно оси апликат:

A" (-2; -3; 1) ;

B" (-5; 3; 2) ;

C" (3; -2; -1) .

7) По аналогии с симметрии в случае с точками на плоскости, в случае симметрии относительно начала координат все координаты точки, симметричной данной, будут равными по абсолютной величине координатам данной точки, но противоположными им по знаку. Итак, получаем следующие координаты точек, симметричных данным относительно начала координат.

Загрузка...
Top