Метод моделирования используется при. Модели и моделирование

курсовая РАБОТА

«Методы моделирования»

Введение

Метод конечных элементов и метод конечных разностей

Метод конечных объёмов

Метод подвижных клеточных автоматов

Метод молекулярной динамики

Метод дискретного элемента

Метод компонентных цепей

Метод узловых потенциалов

Метод переменных состояния

Заключение

Литература

Введение

Компьютерная модель (англ. computer model), или численная модель (англ. computational model) - компьютерная программа, работающая на отдельном компьютере, суперкомпьютере или множестве взаимодействующих компьютеров (вычислительных узлов), реализующая абстрактную модель некоторой системы. Компьютерные модели стали обычным инструментом математического моделирования и применяются в физике, астрофизике, механике, химии, биологии, экономике, социологии, метеорологии, других науках и прикладных задачах в различных областях радиоэлектроники, машиностроения, автомобилестроения и проч. Компьютерные модели используются для получения новых знаний о моделируемом объекте или для приближенной оценки поведения систем, слишком сложных для аналитического исследования.

Компьютерное моделирование является одним из эффективных методов изучения сложных систем. Компьютерные модели проще и удобнее исследовать в силу их возможности проводить т. н. вычислительные эксперименты, в тех случаях, когда реальные эксперименты затруднены из-за финансовых или физических препятствий или могут дать непредсказуемый результат. Логичность и формализованность компьютерных моделей позволяет выявить основные факторы, определяющие свойства изучаемого объекта-оригинала (или целого класса объектов), в частности, исследовать отклик моделируемой физической системы на изменения ее параметров и начальных условий.

Построение компьютерной модели базируется на абстрагировании от конкретной природы явлений или изучаемого объекта-оригинала и состоит из двух этапов - сначала создание качественной, а затем и количественной модели. Компьютерное же моделирование заключается в проведении серии вычислительных экспериментов на компьютере, целью которых является анализ, интерпретация и сопоставление результатов моделирования с реальным поведением изучаемого объекта и, при необходимости, последующее уточнение модели и т. д.

К основным этапам компьютерного моделирования относятся:

постановка задачи, определение объекта моделирования;

разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия;

формализация, то есть переход к математической модели; создание алгоритма и написание программы;

планирование и проведение компьютерных экспериментов;

анализ и интерпретация результатов.

Различают аналитическое и имитационное моделирование. При аналитическом моделировании изучаются математические (абстрактные) модели реального объекта в виде алгебраических, дифференциальных и других уравнений, а также предусматривающих осуществление однозначной вычислительной процедуры, приводящей к их точному решению. При имитационном моделировании исследуются математические модели в виде алгоритмов, воспроизводящего функционирование исследуемой системы путем последовательного выполнения большого количества элементарных операций.

Компьютерное моделирование применяют для широкого круга задач, таких как:

анализ распространения загрязняющих веществ в атмосфере

проектирование шумовых барьеров для борьбы с шумовым загрязнением

конструирование транспортных средств

полетные имитаторы для тренировки пилотов

прогнозирование погоды

эмуляция работы других электронных устройств

прогнозирование цен на финансовых рынках

исследование поведения зданий, конструкций и деталей под механической нагрузкой

прогнозирование прочности конструкций и механизмов их разрушения

проектирование производственных процессов, например химических

стратегическое управление организацией

исследование поведения гидравлических систем: нефтепроводов, водопровода

моделирование роботов и автоматических манипуляторов

моделирование сценарных вариантов развития городов

моделирование транспортных систем

имитация краш-тестов

Различные сферы применения компьютерных моделей предъявляют разные требования к надежности получаемых с их помощью результатов. Для моделирования зданий и деталей самолетов требуется высокая точность и степень достоверности, тогда как модели эволюции городов и социально-экономических систем используются для получения приближенных или качественных результатов

1. Метод конечных элементов и метод конечных разностей

Метод конечных элементов является численным методом решения дифференциальных уравнений, встречающихся в физике и технике.

Основная идея метода конечных элементов состоит в том, что любую непрерывную величину, такую, как температура, давление и перемещение, можно аппроксимировать дискретной моделью, которая строится на множестве кусочно-непрерывных функций определенных на конечном числе подобластей. Кусочно-непрерывные функции определяются с помощью значений непрерывной величины в конечном числе точек рассматриваемой области. В общем случае непрерывная величина заранее неизвестна и нужно определить значения этой величины в некоторых внутренних точках области. Дискретную модель, однако, очень легко «построить, если сначала предположить, что числовые значения этой величины в каждой внутренней точке области известны. После этого можно перейти к общему случаю. Итак, при построении дискретной модели непрерывной величины поступают следующим образом:

В рассматриваемой области фиксируется конечное число точек. Эти точки называются узловыми точками или просто узлами.

Значение непрерывной величины в каждой узловой точке считается переменной, которая должна быть определена. Область определения непрерывной величины разбивается на конечное число подобластей, называемых элементами. Эти элементы имеют общие узловые точки и в совокупности аппроксимируют форму области. Непрерывная величина аппроксимируется на каждом элементе полиномом, который определяется с помощью узловых значений этой величины. Для каждого элемента определяется свой полином, но полиномы подбираются таким образом, чтобы сохранялась непрерывность величины вдоль границ элемента.


Основная концепция метода конечных элементов может быть наглядно проиллюстрирована на одномерном примере заданного распределения температуры в стержне, показанном на рис. 1.1. Рассматривается непрерывная величина Т(х), область определения-отрезок- OL вдоль оси х. Фиксированы и пронумерованы пять точек на оси х (рис. 1.2 а). Это узловые точки; совсем не обязательно располагать их на равном расстоянии друг от друга. Очевидно, можно ввести в рассмотрение более пяти точек, но этих пяти вполне достаточно, чтобы проиллюстрировать основную идею метода. Значения Т(x) В данном случае известны в каждой узловой точке. Эти фиксированные значения представлены графически на рис. 1.2 б и обозначены. В соответствии с номерами узловых точек через T1 + T2 + … + T5 Разбиение области на элементы может быть проведено двумя различными способами. Можно, например, ограничить каждый элемент двумя соседними узловыми точками, образовав четыре элемента (рис. 1.4 а), или разбить область на два элемента, каждый из которых содержат три узла (рис. 1.3 6). Соответствующий элементу полном определяется по значениям Т(x) в узловых точках элемента. В случае разбиения области на четыре элемента, когда на каждый элемент приходится по два узла, функция элемента будет линейна по х (две точки однозначно определяют прямую лилию). Окончательная аппроксимация Т(x) будет состоять из четырех кусочно-линейных функций, каждая из которых определена на отдельном элементе (рис. 1.4 с). Другой способ разбиения области на два элемента с тремя узловыми точками приводит к представлению функции элемента в виде полинома второй степени. В этом случае окончательной аппроксимацией Т(х) будет совокупность двух кусочно-непрерывных квадратичных функций. Отметим, что это приближение будет именно кусочно-непрерывным, так как углы наклона графиков обеих этих функций могут иметь разные значения в третьем узле.

В общем случае распределение температуры неизвестно и мы хотим определить значения этой величины в некоторых точках. Методика построения дискретной модели остается точно такой же, как описано выше, но с добавлением одного дополнительного шага. Снова определяются множество узлов и значения температуры в этих узлах Т1,Т2,Т3 …, которые теперь являются переменными так как они заранее неизвестны. Область разбивается на элементы, на каждом из которых определяется соответствующая функция элемента. Узловые значения Т(х) должны быть теперь «отрегулированы» таким образом, чтобы обеспечивалось «наилучшее» приближение к истинному распределению температуры. Это «регулирование» осуществляется путем минимизации некоторой величины, связанной с физической сущностью задачи. Если рассматривается задача распространения тепла, то минимизируется функционал, связанный с соответствующим дифференциальным уравнением. Процесс минимизации сводится к решению систем линейных алгебраических уравнений относительно узловых значений Т(х).



При построении дискретной модели непрерывной величины, определенной в двух или трехмерной области, основная концепция метода конечных элементов используется аналогично. В двумерном случае элементы описываются функциями от х, у, при этом чаще всего рассматриваются элементы в форме треугольника или четырехугольника. Функции элементов изображаются теперь плоскими (рис. 1.5) или Криволинейными (рис. 1.6) поверхностями. Функция элемента будет представляться плоскостью, если для данного элемента взято минимальное число узловых точек, которое для треугольного элемента равняется трем, а для четырехугольного - четырем.

Если используемое число узлов больше минимального то - функция элемента будет соответствовать криволинейная поверхность. Кроме того, избыточное число узлов позволяет рассматривать элементы с криволинейными границами. Окончательной аппроксимацией двумерной непрерывной величины будет служить совокупность кусочно-непрерывных поверхностей, каждая из которых определяется на отдельном элементе с помощью значений в соответствующих узловых точках. Важным аспектом метода конечных элементов является возможность выделить из набора элементов типичный элемент при определении функции элемента. Это позволяет определять функцию элемента независимо от относительного положения элемента в общей связной модели и от других функций элементов. Задание функции элемента через произвольное множество узловых значений и координат позволяет использовать функции элемента для аппроксимации геометрии области.



Преимущества и недостатки

В настоящее время область применения метода конечных элементов очень обширна и охватывает все физические задачи, которые могут быть описаны дифференциальными уравнениями. Наиболее важными преимуществами метода конечных элементов, благодаря которым он широко используется, являются следующие:

Свойства материалов смежных элементов не должны быть обязательно одинаковыми. Это позволяет применять метод к телам, составленным из нескольких материалов.

Криволинейная область может быть аппроксимирована с помощью прямолинейных элементов или описана точно с помощью криволинейных элементов. Таким образом, методом можно пользоваться не только для областей с «хорошей» формой границы.

Размеры элементов могут быть переменными. Это позволяет укрупнить или измельчить сеть разбиения области на элементы, если в этом есть необходимость.

С помощью метода конечных элементов не представляет труда рассмотрение граничных условий с разрывной поверхностной нагрузкой, а также смешанных граничных условий.

Указанные выше преимущества метода конечных элементов могут быть использованы при составлении достаточно общей программы для решения частных задач определенного класса. Например, с помощью программы для асимметрической задачи о распространении тепла можно решать любую частную задачу этого типа. Факторами, препятствующими расширению круга задач, решаемых методом конечных элементов, являются ограниченность машинной памяти и высокая стоимость вычислительных работ.

Главный недостаток метода конечных элементов заключается в необходимости составления вычислительных программ и применения вычислительной техники. Вычисления, которые требуется проводить при использовании метода конечных элементов, слишком громоздки для ручного счета даже в случае решения очень простых задач. Для решения сложных задач необходимо использовать быстродействующую ЭВМ, обладающую большой памятью.настоящее время имеются технологические возможности для создания достаточно мощных ЭВМ.

Метод конечных разностей является старейшим методом решения краевых задач.

Применение метода конечных разностей позволяет свести дифференциальную краевую задачу к системе нелинейных в общем случае алгебраических уравнений относительно неизвестных узловых значений функций.

Основная идея метода конечных разностей (метода сеток) для приближенного численного решения краевой задачи для двумерного дифференциального уравнения в частных производных состоит в том, что

) на плоскости в области А, в которой ищется решение, строится сеточная область As (рис.1.7), состоящая из одинаковых ячеек размером s (s - шаг сетки) и являющаяся приближением данной области А;

) заданное дифференциальное уравнение в частных производных заменяется в узлах сетки As соответствующим конечно-разностным уравнением;

) с учетом граничных условий устанавливаются значения искомого решения в граничных узлах области Аs.

Рис. 1.7. Построение сеточной области

Решая полученную систему конечно-разностных алгебраических уравнений, получим значения искомой функции в узлах сетки Аs, т.е. приближенное численное решение краевой задачи. Выбор сеточной области Аs зависит от конкретной задачи, но всегда надо стремиться к тому, чтобы контур сеточной области Аs наилучшим образом аппроксимировал контур области А.

Рассмотрим уравнение Лапласа

(1)

где p (x, y) - искомая функция, x, y - прямоугольные координаты плоской области и получим соответствующее ему конечно-разностное уравнение.

Заменим частные производные и в уравнении (1) конечно-разностными отношениями:

(2)

(3)

Тогда решая уравнение (1) относительно , получим:

Задав значения функции в граничных узлах контура сеточной области Аs в соответствии с граничными условиями и решая полученную систему уравнений (4) для каждого узла сетки, получим численное решение краевой задачи (1) в заданной области А.

Ясно, что число уравнений вида (4) равно количеству узлов сеточной области Аs, и чем больше узлов (т.е. чем мельче сетка), тем меньше погрешность вычислений. Однако надо помнить, что с уменьшением шага s возрастает размерность системы уравнений и следовательно, время решения. Поэтому сначала рекомендуется выполнить пробные вычисления с достаточно крупным шагом s , оценить полученную погрешность вычислений, и лишь затем перейти к более мелкой сетке во всей области или в какой-то ее части.

Сравнение метода конечных разностей и метода конечных элементов

Оба метода относятся к классу сеточных методов приближенного решения краевых задач. С точки зрения теоритических оценок точности методы обладают примерно равными возможностями. В зависимости от формы области, краевых условий, коэффициентов исходного уравнения оба метода имеют погрешности аппроксимации от первого до четвертого порядка относительно шага. В силе этого они успешно используются для разработки программных комплексов автоматизированного проектирования технических объектов.

Методы конечных элементов и конечных разностей имеют ряд существенных отличий. Прежде всего, методы различны в том, что в методе конечных разностей аппроксимируется производные искомых функций, а метод конечных элементов - само решение, т.е. зависимость искомых функций от пространственных координат и времени. Методы сильно отличаются и в способе построения сеток. В методе конечных разностей строятся, как правило, регулярные сетки, особенности геометрии области учитываются только в около граничных узлах. В связи с этим метод конечных разностей чаще применяется для анализа задач с прямолинейными границами областей определения функций. К числу традиционных задач, решаемых на основе метода конечных разностей, относятся исследования течений жидкостей и газов в трубах, каналах с учетом теплообменных процессов и ряд других. В методе конечных элементов разбиение на элементы производится с учетом геометрических особенностей области, процесс разбиения начинается от границы с целью наилучшей аппроксимации её геометрии. Затем разбивают на элементы внутренние области, причем алгоритм разбиения строится так чтобы элементы удовлетворяли некоторым ограничениям, например стороны треугольников не слишком отличались по длине и т.д. Поэтому метод конечных элементов наиболее часто используется для решения задач с произвольной областью определения функций, таких, как расчет на прочность деталей и узлов строительных конструкций, авиационных и космических аппаратов, тепловой расчет двигателей и т.д.

Метод конечных объёмов

алгоритм программа моделирование

Отправной точкой метода конечных объёмов (МКО) является интегральная формулировка законов сохранения массы, импульса, энергии и др. Балансовые соотношения записываются для небольшого контрольного объема; их дискретный аналог получается суммированием по всем граням выделенного объема потоков массы, импульса и т.д., вычисленных по каким - либо квадратурным формулам. Поскольку интегральная формулировка законов сохранения не накладывает ограничений на форму контрольного объема, МКО пригоден для дискретизации уравнений гидрогазодинамики как на структурированных, так и на неструктурированных сетках с различной формой ячеек, что, в принципе, полностью решает проблему сложной геометрии расчетной области.

Следует заметить, однако, что использование неструктурированных сеток является довольно сложным в алгоритмическом отношении, трудоемким при реализации и ресурсоемким при проведении расчетов, в особенности при решении трехмерных задач. Это связано как с многообразием возможных форм ячеек расчетной сетки, так и с необходимостью применения более сложных методов для решения системы алгебраических уравнений, не имеющей определенной структуры. Практика последних лет показывает, что развитые разработки вычислительных средств, базирующихся на использовании неструктурированных сеток, по силам лишь достаточно крупным компаниям, имеющим соответствующие людские и финансовые ресурсы. Гораздо более экономичным оказывается использование блочно-структурированных сеток, предполагающее разбиение области течения на несколько подобластей (блоков) относительно простой формы, в каждой из которых строится своя расчетная сетка. В целом такая составная сетка не является структурированной, однако внутри каждого блока сохраняется обычная индексная нумерация узлов, что позволяет использовать эффективные алгоритмы, разработанные для структурированных сеток. Фактически, для перехода от одноблочной сетки к многоблочной необходимо лишь организовать стыковку блоков, т.е. обмен данными между соприкасающимися подобластями для учета их взаимного влияния. Заметим также, что разбиение задачи на отдельные относительно независимые блоки естественным образом вписывается в концепцию параллельных вычислений на кластерных системах с обработкой отдельных блоков на разных процессорах (компьютерах). Все это делает использование блочно-структурированных сеток в сочетании с МКО сравнительно простым, но чрезвычайно эффективным средством расширения геометрии решаемых задач, что исключительно важно для небольших университетских групп, разрабатывающих собственные программы в области гидрогазодинамики.

Отмеченные выше достоинства МКО послужили основанием к тому, что в начале 1990-х гг. именно этот подход с ориентацией на использование блочно-структурированных сеток был выбран авторами в качестве основы для разработки собственного пакета программ широкого профиля для задач гидрогазодинамики и конвективного теплообмена.

Математическое описание:

где: - изменение некоторой физической величины

Конвективное слагаемое в абстрактном законе сохранения физической величины

Диффузное слагаемое в абстрактном законе сохранения физической величины

Источниковое слагаемое в абстрактном законе сохранения физической величины

Метод подвижных клеточных автоматов

Метод подвижных клеточных автоматов (MCA, от англ. movable cellular automata) - это метод вычислительной механики деформируемого твердого тела, основанный на дискретном подходе. Он объединяет преимущества метода классических клеточных автоматов и метода дискретных элементов. Важным преимуществом метода клеточных автоматов является возможность моделирования разрушения материала, включая генерацию повреждений, распространение трещин, фрагментацию и перемешивание вещества. Моделирование именно этих процессов вызывает наибольшие трудности в методах механики сплошных сред (метод конечных элементов, метод конечных разностей и др.), что является причиной разработки новых концепций, например, таких как перидинамика. Известно, что метод дискретных элементов весьма эффективно описывает поведение гранулированных сред. Особенности расчета сил взаимодействия между подвижными клеточными автоматами позволяют описывать в рамках единого подхода поведение как гранулированных, так и сплошных сред. Так, при стремлении характерного размера автомата к нулю формализм метода клеточных автоматов позволяет перейти к классическим соотношениям механики сплошной среды.

В рамках метода клеточных автоматов объект моделирования описывается как набор взаимодействующих элементов/автоматов. Динамика множества автоматов определяется силами их взаимодействия и правилами для изменения их состояния. Эволюция этой системы в пространстве и во времени определяется уравнениями движения. Силы взаимодействия и правила для связанных элементов определяются функциями отклика автомата. Эти функции задаются для каждого автомата. В течение движения автомата следующие новые параметры клеточного автомата рассчитываются: - радиус-вектор автомата; - скорость автомата;

Угловая скорость автомата;

Вектор поворота автомата; - масса автомата; - момент инерции автомата.

Ввод нового типа состояния требует нового параметра используемого в качестве критерия переключения в состояние связанные. Это определяется как параметр перекрытия автоматов hij.

И так, связь клеточных автоматов характеризуется величиной их перекрытия.

Рис 3.1 Начальная структура формируется установкой свойств особой связи между каждой парой соседних элементов.

По сравнению с методом классических клеточных автоматами в методе MCA не только единичный автомат но и также связи автоматов могут переключаться. В соответствии с концепцией бистабильных автоматов вводится два состояния пары (взаимосвязь):


Итак, изменение состояния связи пары определяется относительным движением автоматов, и среда формируемая такими парами может быть названа бистабильной средой.

Уравнения движения клеточных автоматов

Эволюция клеточных автоматов среды описывается следующими уравнениями трансляционного движения:

(6)

Рис 3.2 Учет сил, действующих между автоматами ij со стороны их соседей.

Здесь mi это масса автомата i, pij это центральная сила действующая между автоматами i и j, C(ij, ik) это особый коэффициент ассоциированный с переносом параметра h из пары ij к ik, ψ(αij, ik) это угол между направлениями ij и ik.

Вращательные движения также могут быть учтены с точностью ограниченной размером клеточного автомата. Уравнения вращательного движения могут быть записаны следующим образом:

Здесь Θij угол относительного поворота (это параметр переключения подобно hij трансляционного движения), qij(ji) это расстояние от центра автомата i(j) до точки контакта с автоматом j(i) (угловой момент), τij это парное тангенциальное взаимодействие, S(ij, ik(jl)) это особый коэффициент ассоциированный с параметром переноса Θ от одной пары к другой (это похоже на C(ij, ik(jl)) из уравнений трансляционного движения). Следует отметить, что уравнения полностью аналогичны уравнениям движения для много-частичной среды. Определение деформации пары автоматов

Рис 3.3 Вращение тела как целого не приводит к деформации между автоматами

Смещение пары автоматов Безразмерный параметр деформации для смещения i j пары автоматов записывается как:

(8)

В этом случае:

где Δt временной шаг, Vnij - зависимая скорость. Вращение пары автоматов может быть посчитано аналогично с связью последнего смешения.

Необратимая деформация в методе клеточных автоматов

Параметр εij используется как мера деформации автомата i взаимодействующего с автоматом j. Где qij - расстояние от центра автомата i до точки его контакта с автоматом j; Ri=di/2 (di - размер автомата i).

Например, титановый образец при циклическом нагружении (растяжение-сжатие). Диаграмма деформирования показана на следующем рисунке:

Преимущества метода клеточных автоматов

Благодаря подвижности каждого автомата метод клеточных автоматов позволяет напрямую учитывать такие события как:

перемешивание масс

эффект проникновения

химические реакции

интенсивные деформации

фазовые превращения

накопление повреждений

фрагментация и трещины

генерация и развитие повреждений

Используя различные граничные условия разных типов (жесткие, упругие, вязко-упругие, т.д.) можно имитировать различные свойства окружающей среды, содержащей моделируемую систему. Можно моделировать различные режимы механического нагружения (растяжение, сжатие, сдвиг, т.д.) с помощью настроек дополнительных состояний на границах.

Метод молекулярной динамики

Метод молекулярной динамики (метод МД) - метод, в котором временная эволюция системы взаимодействующих атомов или частиц отслеживается интегрированием их уравнений движения

Метод классической (полноатомной) молекулярной динамики позволяет с использованием современных ЭВМ рассматривать системы, состоящие из нескольких миллионов атомов на временах порядка нескольких пикосекунд. Применение других подходов (тяжело-атомные, крупно-зернистые модели) позволяет увеличить шаг интегрирования и тем самым увеличить доступное для наблюдения время до порядка микросекунд. Для решения таких задач все чаще требуются большие вычислительные мощности, которыми обладают суперкомпьютеры.

Основные положения метода

Для описания движения атомов или частиц применяется классическая механика. Закон движения частиц находят при помощи аналитической механики.

Силы межатомного взаимодействия можно представить в форме классических потенциальных сил (как градиент потенциальной энергии системы).

Точное знание траекторий движения частиц системы на больших промежутках времени не является необходимым для получения результатов макроскопического (термодинамического) характера.

Наборы конфигураций, получаемые в ходе расчетов методом молекулярной динамики, распределены в соответствии с некоторой статистической функцией распределения, например отвечающей микроканоническому распределению.

Ограничения применимости метода

Метод молекулярной динамики применим, если длина волны Де Бройля атома (или частицы) много меньше, чем межатомное расстояние.

Также классическая молекулярная динамика не применима для моделирования систем, состоящих из легких атомов, таких как гелий или водород. Кроме того, при низких температурах квантовые эффекты становятся определяющими и для рассмотрения таких систем необходимо использовать квантовохимические методы. Необходимо, чтобы времена на которых рассматривается поведение системы были больше, чем время релаксации исследуемых физических величин.

Применение

Метод молекулярной динамики, изначально разработанный в теоретической физике, получил большое распространение в химии и, начиная с 1970х годов, в биохимии и биофизике. Он играет важную роль в определении структуры белка и уточнении его свойств (см. также кристаллография, ЯМР). Взаимодействие между объектами может быть описано силовым полем (классическая молекулярная динамика), квантовохимической моделью или смешанной теорией, содержащей элементы двух предыдущих (QM/MM (quantum mechanics/molecular mechanics, QMMM (англ.)).

Наиболее популярными пакетами программного обеспечения для моделирования динамики биологических молекул являются: AMBER, CHARMM (и коммерческая версия CHARMm), GROMACS, GROMOS,Lammps и NAMD.

Метод дискретного элемента

Метод дискретного элемента (DEM, от англ. Discrete element method) - это семейство численных методов предназначенных для расчёта движения большого количества частиц, таких как молекулы, песчинки, гравий, галька и прочих гранулированных сред. Метод был первоначально применён Cundall в 1971 для решения задач механики горных пород. Williams, Hocking и Mustoe детализировали теоретические основа метода. В 1985 они показали, что DEM может быть рассмотрен как обобщение метода конечных элементов (МКЭ, FEM). В книге Numerical Modeling in Rock Mechanics, by Pande, G., Beer, G. and Williams, J.R. описано применение этого метода для решения геомеханических задач. Теоретические основы метода и возможности его применения неоднократно рассматривалось на 1-й, 2-й и 3-й Международной Конференции по Методам Дискретного Элемента. Williams, и Bicanic (см. ниже) опубликовали ряд журнальных статей описывающих современные тенденции в области DEM. В книге The Combined Finite-Discrete Element Method, Munjiza детально описано комбинирование Метода Конечного Элемента и Метода Дискретного Элемента.

Этот метод иногда называют молекулярной динамикой (MD), даже когда частицы не являются молекулами. Однако, в противоположность молекулярной динамике, этот метод может быть использован для моделирования частиц с не сферичной поверхностью. Методы дискретного элемента очень требовательны к вычислительным ресурсам ЭВМ. Это ограничивает размер модели или количество используемых частиц. Прогресс в области вычислительной техники позволяет частично снять это ограничение за счет использования параллельной обработки данных. Альтернативой обработки всех частиц отдельно является обработка данных как сплошной среды. Например, если гранульный поток подобен газу или жидкости, можно использовать вычислительную гидродинамику.

Основные принципы метода

Моделирование МДЭ начинается c помещения всех частиц в конкретное положение и придания им начальной скорости. Затем силы, воздействующие на каждую частицу, рассчитываются, исходя из начальных данных и соответствующих физических законов.

Следующие силы могут иметь влияние в макроскопических моделях:

трение, когда две частицы касаются друг друга;

отскакивание, когда две частицы сталкиваются;

гравитация (сила притяжения между частицами из-за их массы), которая имеет отношение только при астрономическом моделировании;

На молекулярном уровне, мы можем рассматривать Силу Кулона, электростатическое притяжение или отталкивание частиц, несущих электрический заряд;

Отталкивание Паули, когда два атома находятся вблизи друг от друга;

Силу Ван дер Ваальса.

Все эти силы складываются, чтобы найти результирующую силу, воздействующую на каждую частицу. Чтобы рассчитать изменение в положении и скорости каждой частицы в течение определенного временного шага из законов Ньютона, используется метод интеграции. После этого новое положение используется для расчёта сил в течение следующего шага, и этот цикл программы повторяется до тех пор, пока моделирование не закончится.

Типичные методы интеграции используемые в методе дискретного элемента:

алгоритм Верлета,

скорость Верлета,

метод прыжка.

Дальнодействующие силы

Когда во внимание принимаются дальнодействующие силы (гравитация, сила Кулона), взаимодействия каждой пары частиц необходимо рассчитывать. Число взаимодействий, а следовательно, ресурсоёмкость расчёта, возрастает с увеличением количества частиц квадратично, что не приемлемо для моделей с большим числом частиц. Возможный путь решить эту проблему - объединить некоторые частицы, которые находятся на расстоянии от рассматриваемой частицы, в одну псевдочастицу. Рассмотрим, например, взаимодействие между звездой и отдаленной галактикой: ошибка, возникающая из-за объединения массы всех звезд в удалённой галактике в одну точку, незначительна. Для того, чтобы определить, какие частицы могут быть объединены в одну псевдочастицу, используются так называемые древесные алгоритмы. Эти алгоритмы распределяют все частицы в виде дерева, квадрадерева в случае двухмерной модели и октадерева в случае трехмерной модели.

Модели в молекулярной динамике делят пространство, в котором происходит моделируемый процесс, на ячейки. Частицы, уходящие через одну сторону ячейки просто вставляются с другой стороны (периодические граничные условия); так же происходит и с силами. Силы перестают приниматься в расчёт после так называемой дистанции отсечения (обычно половина длины ячейки), так что на частицу не воздействует зеркальное расположение той же частицы на другой стороне ячейки. Таким образом, можно увеличивать количество частиц простым копированием ячеек.

Применение

Фундаментальным предположением метода является то, что материал состоит из отдельных, дискретных частиц. Эти частицы могут иметь различные поверхности и свойства. Примеры:

жидкости и растворы, например сахар или белок;

сыпучие вещества в элеваторе, такие как крупа;

гранулированный материал, такой как песок;

порошки, такие как тонер.

Типичные отрасли промышленности использующие DEM:

Горнодобывающая

Фармацевтическая

Нефтегазовая

Сельскохозяйственная

Химическая

Метод компонентных цепей

Метод компонентных цепей - это метод, предназначенный для моделирования физически неоднородных устройств и систем, исходная информация о которых задана в виде модели структуры. Основной структурной сущностью метода компонентных цепей является многополюсный компонент с произвольным числом связей, которым инцидентны переменные связей.

Математическая модель компонента - это уравнение либо система уравнений (линейных, нелинейных, обыкновенных дифференциальных 1-го порядка) относительно его переменных связей и внутренних переменных. Совокупность компонентов, связи которых, именуемые ветвями компонентных цепей, объединены в общих точках, именуемых узлами, определяется как компонентная цепь Ск = {К, S, N}, где К - множество компонентов; S - множество связей компонентов из К; N - множество узлов цепи.

В соответствии с типом переменных, действующих на связи, определены два основных типа связей:

связи энергетического типа S%, которым соответствует пара топологических координат и пара дуальных переменных , где nk - номер узла k-й связи; bk - номер ветви, nk - знак, задающий ориентацию связи, , - переменные связи потенциального и потокового типа;

связи информационного типа S"k, которым соответствует одна топологическая координата и одна переменная связи, имеющая произвольный физический смысл .

Принципиальное отличие переменных потенциального и потокового типа состоит в том, что для последних при формировании математической модели компонентных цепей в нее автоматически включаются уравнения узловых топологических законов сохранения. Таким образом, математическая модель компонентных цепей имеет вид

(11)

где - совокупность уравнений моделей компонентов, входящих в компонентные цепи; - уравнения базового узла; - уравнения узловых топологических законов сохранения для переменных потокового типа, записанные для всех узлов за исключением базового; - множество связей энергетического типа.

Согласно числу переменных, действующих на связях, выделяются связи скалярного и векторного типа. На связи скалярного типа могут действовать лишь по одной потенциальной и потоковой переменной, т.е. по одной разнотипной переменной. К скалярным связям относятся связи энергетического и информационного типов. Связи векторного типа может быть инцидентно более двух переменных одного типа. Связи векторного типа являются объединением скалярных. Методом компонентных цепей предусматривается автоматическое формирование моделей компонентных цепей во временной и в частотной (для линейных непрерывных схем) областях. При моделировании во временной области

где - комплексная частота, а мнимые составляющие реализуются посредством внутренних переменных. В результате алгебраизации и линеаризации дифференциальных и нелинейных уравнений модель компонентных цепей принимает вид системы линейных алгебраических уравнений относительно переменных связей компонентных цепей и вспомогательных переменных:

где Ф - квадратная матрица коэффициентов; W - вектор-столбец правых частей; V - вектор-столбец решения компонентных цепей, включающий векторы потенциальных, потоковых и внутренних переменных компонентных цепей.

7. Метод узловых потенциалов

Метод узловых потенциалов - метод расчета электрических цепей путём записи системы линейных алгебраических уравнений, в которой неизвестными являются потенциалы в узлах цепи. В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, токи во всех ветвях.

Очень часто необходимым этапом при решении самых разных задач электроники является расчет электрической цепи. Под этим термином понимается процесс получения полной информации о напряжениях во всех узлах и о токах во всех ветвях заданной электрической цепи. Для расчета линейной цепи достаточно записать необходимое число уравнений, которые базируются на правилах Кирхгофа и законе Ома, а затем решить полученную систему.

Однако на практике записать систему уравнений просто из вида схемы удается только для очень простых схем. Если в схеме более десятка элементов или она содержит участки типа мостов, то для записи системы уравнений уже требуются специальные методики. К таким методикам относятся метод узловых потенциалов и метод контурных токов.

Метод узловых потенциалов не привносит ничего нового к правилам Кирхгофа и закону Ома. Данный метод лишь формализует их использование настолько, чтобы их можно было применить к любой, сколь угодно сложной цепи. Иными словами, метод даёт ответ на вопрос «как использовать законы для расчета данной цепи?».

Если в цепи, состоящей из У узлов и Р рёбер известны все характеристики звеньев (полные сопротивления R, величины источников ЭДС E и тока J), то возможно вычислить токи Ii во всех рёбрах и потенциалы φi во всех узлах. Поскольку электрический потенциал определён с точностью до произвольного постоянного слагаемого, то потенциал в одном из узлов (назовём его базовым узлом) можно принять равным нулю, а потенциалы в остальных узлах определять относительно базового узла. Таким образом, при расчёте цепи имеем У+Р-1 неизвестных переменных: У-1 узловых потенциалов и Р токов в рёбрах.

Не все из указанных переменных независимы. Например, исходя из закона Ома для участка цепи, токи в звеньях полностью определяются потенциалами в узлах:

(12)

С другой стороны, токи в рёбрах однозначно определяют распределение потенциала в узлах относительно базового узла:

Таким образом, минимальное число независимых переменных в уравнениях цепи равно либо числу звеньев, либо числу узлов минус 1, в зависимости от того, какое из этих чисел меньше.

При расчёте цепей чаще всего используются уравнения, записываемые исходя из законов Кирхгофа. Система состоит из У-1 уравнений по 1-му закону Кирхгофа (для всех узлов, кроме базового) и К уравнений по 2-му закону Кирхгофа для каждого независимого контура. Независимыми переменными в уравнениях Кирхгофа являются токи звеньев. Поскольку согласно формуле Эйлера для плоского графа число узлов, рёбер и независимых контуров связаны соотношением или то число уравнений Кирхгофа равно числу переменных, и система разрешима. Однако число уравнений в системе Кирхгофа избыточно. Одним из методов сокращения числа уравнений является метод узловых потенциалов. Переменными в системе уравнений являются У-1 узловых потенциалов. Уравнения записываются для всех узлов, кроме базового. Уравнения для контуров в системе отсутствуют.

Перед началом расчёта выбирается один из узлов (базовый узел), потенциал которого считается равным нулю. Затем узлы нумеруются, после чего составляется система уравнений.

Уравнения составляются для каждого узла, кроме базового. Слева от знака равенства записывается:

потенциал рассматриваемого узла, умноженный на сумму проводимостей ветвей, примыкающих к нему;

минус потенциалы узлов, примыкающих к данному, умноженные на проводимости ветвей, соединяющих их с данным узлом.

Справа от знака равенства записывается:

сумма всех источников токов, примыкающих к данному узлу;

сумма произведений всех ЭДС, примыкающих к данному узлу, на проводимость соответствующего звена.

Если источник направлен в сторону рассматриваемого узла, то он записывается со знаком «+», в противном случае - со знаком «−».

Метод переменных состояния

Метод переменных состояния (называемый иначе методом пространственных состояния) представляет собой упорядоченный способ нахождения состояния системы в функции времени, использующий матричный метод решения системы дифференциальных уравнений первого порядка, записанных в форме Коши (в нормальной форме). Применительно к электрическим цепям под переменными состояниями понимают величины, определяющие энергетическое состояние цепи, т.е. токи через индуктивные элементы и напряжения на конденсаторах. Значения этих величин полагаем известными к началу процесса. Переменные состояния в обобщенном смысле назовем х. Так как это некоторые функции времени, то их можно обозначить x(t).

Метод переменных состояния основывается на двух уравнениях, записываемых в матричной форме.

Структура первого уравнения определяется тем, что оно связывает матрицу первых производных по времени переменных состояния x¢(t) с матрицами самих переменных состояний x и внешних воздействий u, в качестве которых рассматриваются ЭДС и токи источников.

Второе уравнение по своей структуре является алгебраическим и связывает матрицу выходных величин y с матрицами переменных состояния x и внешних воздействий u.

Определяя переменные состояния, отметим следующие их свойства:

В качестве переменных состояния в электрических цепях следует выбрать токи в индуктивностях и напряжения на емкостях, причем не во всех индуктивностях и не на всех емкостях, а только для независимых, т.е. таких, которые определяют общий порядок системы дифференциальных уравнений цепи.

Дифференциальные уравнения цепи относительно переменных состояния записываются в канонической форме, т.е. представляются решенными относительно первых производных переменных состояния по времени.

Отметим, что только при выборе в качестве переменных состояния токов в независимых индуктивностях и напряжений на независимых емкостях первое уравнение метода переменных состояния будет иметь указанную выше структуру.

Если в качестве переменных состояния выбрать токи в ветвях с емкостями или токи в ветвях с сопротивлениями, а также напряжения на индуктивностях или напряжения на сопротивлениях, то первое уравнение метода переменных состояния также можно представить в канонической форме, т.е. решенным относительно первых производных по времени этих величин. Однако, структура их правых частей не будет соответствовать данному выше определению, так как в них будет еще входить матрица первых производных от внешних воздействий u¢. Число переменных состояния равно порядку системы дифференциальных уравнений исследуемой электрической цепи. Выбор в качестве переменных состояния токов и напряжений удобен еще и потому, что именно эти величины согласно законам коммутации в момент коммутации не изменяются скачком, т.е. одинаковы для моментов времени t=0+ и t=0-. Переменные состояния и потому так и называются, что в каждый момент времени задают энергетическое состояние электрической цепи, так как последнее определяется суммой выражений и . Представление уравнений в канонической форме очень удобно при их решении на аналоговых вычислительных машинах и для программирования при их решении на цифровых вычислительных машинах. Поэтому такое представление имеет очень важное значение при решении этих уравнений с помощью средств современной вычислительной техники. Пусть в системе n переменных состояния, m выходных величин и р источников воздействия. Тогда матрицу-столбец переменных состояния в n-мерном пространстве состояний, матрицу-столбец выходных величин, матрицу-столбец источников воздействий обозначим соответственно

(14)

Для электрических цепей можно составить матричные уравнения вида:

где [A], [B], [C], [D] - некоторые матрицы, определяемые структурой цепи и значениями ее параметров. Причем [A] - всегда квадратная матрица порядка n.

(15) - система n дифференциальных уравнений первого порядка (в общем случае взаимосвязанных), называемая уравнением переменных состояния в нормальной форме. Вспомогательные переменные х, х...х - переменные состояния, а [x] - вектор переменных состояния.(16) - выходное уравнение.

Преимущества

Решение таких систем широко известно в математике как в численном, так и в аналитическом виде.

Уравнения легко решаются на ЭВМ.

Как правило, число уравнений в системе (15) оказывается меньше, чем число уравнений, составленных МУП.

Метод может быть обобщен для решения нелинейных систем

Заключение

Польза от компьютерного моделирования по сравнению с натурным экспериментом:

это дешевле

это быстрее.

В некоторых процессах, где натурный эксперимент опасен для жизни и здоровья людей, вычислительный эксперимент является единственно возможным (термоядерный синтез, освоение космического пространства, проектирование и исследование химических и других производств).

Для проверки адекватности математической модели и реального объекта, процесса или системы результаты исследований на ЭВМ сравниваются с результатами эксперимента на опытном натурном образце. Результаты проверки используются для корректировки математической модели или решается вопрос о применимости построенной математической модели к проектированию либо исследованию заданных объектов, процессов или систем. В задачах проектирования или исследования поведения реальных объектов, процессов или систем чаще всего используются математические модели типа ДНА (детерминированная, непрерывная, аналитическая). Методы решения математических задач можно разделить на 2 группы:

точные методы решения задач (ответ получается в виде формул);

численные методы решения задач (формулы нет, но можно построить много арифметических операций, которые приведут к решению).

Численные методы разрабатываются вычислительной математикой и особенно актуальны при применении ЭВМ. Ни те, ни другие методы обычно не дают точного решения, однако это не значит, что разум бессилен а, это всего лишь означает, что надо установить требуемую степень точности и решать проблему с заданной точностью.

Литература

1. Сегерлинд Л. «Применение метода конечных элементов» Перевод с английского Шестакова А.А. Москва 1979

Http://ru.wikipedia.org/wiki/Метод_классической_молекулярной_динамики

Е.М. Смирнов, Д.К. Зайцев «Метод конечных объемов в приложении к задачам гидрогазодинамики и теплообмена в областях сложной геометрии» Научно технические ведомости 2’ 2004

Http://ru.wikipedia.org/wiki/Метод_подвижных_клеточных_автоматов

Узловые вопросы темы:

2.3.1. Основная функция модели.

2.3.2. Примеры применения метода моделирования. Основные понятия темы: модель , метод моделирования.

Основная функция модели.

В основе метода моделирования лежит понятие модели. Под моделью понимают: а) образец какого-либо нового изделия; б) предмет, выражающийся в уменьшенном или иногда в увеличенном или в натуральном виде.

Итак, как видно из этого определения, основная функция модели - замещения. Исследователь создает для данного натурального объекта модель, то есть образец, который воспроизводит объект в его основных, определяющих, главных чертах, пренебрегая при этом второстепенные признаки объекта. Затем исследователь исследует закономерности, которые проявляются в поведении модели и в конце концов переносит их на натуральный объект изучения.

Различают модели материальные и абстрактные, к последним относят графические, табличные, схематические, математические и другие.

Построить модель учебного или воспитательного процесса, чтобы на ее основе спрогнозировать поведение того или иного объекта очень трудно, но это не значит, что моделирование педагогических процессов невозможно. Эта отрасль педагогической деятельности (моделирование учебно-воспитательного процесса) развивается очень медленно прежде всего в силу больших трудностей в создании соответствующих моделей.

Примеры применения метода моделирования.

Сегодня в большинстве кандидатских и докторских диссертаций как обязательный элемент содержания диссертаций выступают различные схемы моделей формирования или развития каких-то конкретных качеств. Будто тенденция положительная и следовало бы бы это приветствовать, однако то, что, как правило, предлагается, даже близко не напоминает модель. Ярких, красивых примеров педагогического моделирования найти трудно, но некоторое представление о педагогическое моделирование даст такой пример.

Известно, что процесс забывания усвоенных знаний протекает так, как показано на рис. 3 (кривая забывания построена известным немецким психологом Эббингауза в 1885 году). Для любого момента времени мы можем оценить ту долю информации, которой владеет ученик, чтобы потом использовать в следующих учебных целях. На основе этого графика (модели) мы можем воспроизвести процесс забывания знаний или просто информации. Из него видно, что уже через полчаса в памяти человека остается лишь половина того, что она запомнила в начале усвоения.

Рис .

Рассмотрим другой пример. Уровень овладения мастерством при усвоении определенного материала зависит от времени, ученик тратит на усвоение, так как показано на рис. 4 (кривая 1).

Рис .

Начиная с момента t, любые учебные действия ученика не приводят к заметному росту в усвоении материала. Ученик достиг определенного "плато", которое определяется горизонтальной пунктирной линией. Итак процесс учения фактически прекратился. Оказывается, что можно, например, в момент t 0 начать изучение этого же материала, но использовав при этом уже другую стратегию обучения. Тогда процесс обучения будет протекать так, как показано на кривой 2.1 уже в t 1 уровень мастерства будет значительно выше. Итак меняя стратегии обучения, можно обеспечить достаточно высокий уровень усвоения материала. Процесс накопления знаний идет так, как показано на рис. 5.

Рис. 5 .

Если процесс усвоения остановить в момент t 1, то сразу же начнется забывание (кривая II). При следующем подкреплении, начатом в момент t 2, процесс забывания прекращается, начинается накопление знаний, но оно уже будет идти более стремительно (кривая III) и т.д. Эта графическая картина графической моделью процесса усвоения знаний. Можно таким образом утверждать, что: а) многократное подкрепление приведет к уменьшению темпа забывания; б) можно определить число подкреплений, которые достаточны будут для надежного усвоения материала.

С точки зрения вышеизложенного интересен такой пример. Процесс усвоения знаний протекает как показано на рис. 6. По вертикальной оси отложены равные усвоения, по горизонтальной - время.

Как видим за время t 1 первый ученик усвоил материал на I уровне, второй - на третьем. То есть темп усвоения материала двух учеников разный. Итак планируя процесс обучения и прогнозируя его результаты для двух учеников мы можем спланировать дифференцированные шаги, которые бы учитывали темп усвоения обоих.

Рис. 6. Темп усвоения материала

Мы привели некоторые примеры графического моделирования процесса обучения, так как они дают наглядное представление о сущности и о возможных вариантах его осуществления. Из этих графиков видно, что они являются специфическими графическими процессами, закономерности которых можно перенести в реальный учебный процесс.

Сложность, неисчерпаемость, бесконечность объекта педагогического исследования заставляет для проникновения в его суть, в его внутреннюю структуру и динамику искать более простые аналоги для исследования. Более простой по структуре и доступный изучению объект становится моделью более сложного объекта, именуемого прототипом (оригиналом). Открывается возможность переноса информации, добытой при использовании модели, по аналогии на прототип. В этом сущность одного из методов теоретического уровня - метода моделирования .

Моделирование - метод научного исследования явлений, процессов, объектов, устройств или систем (обобщенно - объектов исследований), основанный на построении и изучении моделей с целью получения новых знаний, совершенствования характеристик объектов исследований или управления ими.

Это такой общенаучный метод исследования, при котором изучается не сам объект познания, а его изображение в виде так называемой модели, но результат исследования переносится с модели на объект (А. А. Кыве- рялг). Один из способов познания, когда изучение того или иного объекта производится с помощью изучения другого объекта, в каком-то отношении подобного первому, с последующим переносом на первый объект результатов изучения второго. Этот второй объект и называют моделью первого. Таким образом, моделирование есть процесс построения модели или исследование объектов познания на их моделях.

Слово «модель» (от лат. modulus") прочно вошло в повседневный язык. Модель - это мера, образец, норма. Именно так мы называем мысленный (абстрактный), знаковый (математический, словесноописательный, графический) или материальный образ оригинала, т.е. модель - это «заместитель» оригинала в познании или на практике.

Моделировать можно внешний вид объекта (детские модели «взрослых» автомобилей); функции (математическая модель движения летального аппарата); структуру и логику объектов (модель гимназии) и т.п.

При изучении сложных явлений, процессов, объектов не удается учесть полную совокупность всех элементов и связей, определяющих их свойства. Модель можно представить как материальный объект или образ (мысленный или условный: гипотеза, идея, абстракция, изображение, описание, схема, формула, чертеж, план, блок-схема алгоритма и т.п.), который упрощенно отображает самые существенные свойства объекта исследования.

Таким образом, любая модель всегда проще реального объекта и отображает лишь часть его самых существенных черт, основных элементов и связей. По этой причине для одного объекта исследования существует множество различных моделей. Вид модели зависит от выбранной цели моделирования.

Моделирование предполагает построение и изучение моделей реально существующих предметов, явлений, объектов с целью:

  • - определения или улучшения их характеристик;
  • - рационализации способов их построения;
  • - управления и прогнозирования.

При помощи модели можно устанавливать и описывать компоненты изучаемого объекта и взаимосвязь между ними, давать сведения об управлении объекта и прогнозировать его развитие.

Гносеологическая сущность научных моделей в том, что они позволяют системно и наглядно выразить знание о предмете, его функциях, параметрах и пр. Основное назначение модели - объяснить совокупность данных, относящихся к предмету познания.

Модель в чем-то схематизирует явления действительности, отвлекает от каких-то конкретных свойств, поэтому она всегда применима для описания только отдельных сторон конкретных явлений при определенных условиях. Одно и то же педагогическое явление можно представить с помощью нескольких моделей.

Как известно, модель есть созданная или выбранная исследователем система, воспроизводящая существенные для данной цели познания стороны (элементы, свойства, отношения, параметры) изучаемого объекта и в силу этого находящаяся с ним в таком отношении замещения и сходства (в частности, изоморфизма), что исследование ее служит опосредованным способом получения знания об этом объекте (В. А. Штофф).

Существуют разные классификации моделей. Л. М. Фридман , подчеркивая, что модели строятся или выбираются человеком с определенной целью, выделяет:

  • 1) модель-заместитель, т.е. замена оригинала в некотором мысленном (воображаемом) или реальном действии (процессе), исходя из того, что модель более удобна для этого действия в данных условиях;
  • 2) модель-представление, т.е. создание представления об объекте с помощью модели;
  • 3) модель-интерпретация, т.е. истолкование объекта в виде модели;
  • 4) модель исследовательская, т.е. исследование объекта с помощью модели.

Для того чтобы модель подходила для указанных целей, она должна обладать соответствующими признаками. Л. М. Фридман подчеркивает, что в большинстве случаев модель обладает не одним признаком, а несколькими, поэтому она может быть пригодна для нескольких целей. Это означает, что модель-заместитель может быть одновременно и моделью-представлением и исследовательской моделью. Тем не менее вид модели определяется именно той целью, для которой она была первоначально построена.

Модели классифицируются также следующим образом:

  • а) понятийная, отражающая знания об объекте в форме определенной совокупности взаимосвязанных положений, утверждений, выводов;
  • б) образная, воспроизводящая основные стороны, элементы, связи, отношения объекта в форме описаний, фото- и киномоделей, графиков, схем;
  • в) знаково-символическая (математическая), отражающая существенные внутренние и внешние связи и отношения оригинала в виде формулы;
  • г) физическая, отображающая структуру и функции объекта в пространстве.

Каждая из них имеет как достоинства, так и недостатки. Каждая дает возможность в каком-то своеобразном ракурсе увидеть исследуемый объект. Поэтому целесообразно сочетание их в процессе моделирования, использование и словесных описаний, и рисунков, и формул, которые в своей совокупности могут отразить с достаточной полнотой даже весьма сложные системы.

Также различают модели воображаемых и реальных объектов; модели будущих событий или процессов (прогнозирующие модели) и модели совершенных событий (модели описания).

В педагогической науке часто используют модели статические и динамические. Статическая модель характеризует объект в конкретный момент времени, динамическая модель показывает, как изменяется состояние объекта исследования с изменением времени. Статическая модель педагогического процесса чаще всего характеризуется с учетом следующих компонентов:

  • - концептуально-целевой (включающий цели, задачи, идеи, принципы исследуемого процесса);
  • - содержательный (виды, сферы, направления деятельности);
  • - процессуальный или операционно-деятельностный (технологии, формы, методы, средства);
  • - аналитико-результативный (критерии и показатели развития исследуемого процесса, методики и способы их замера, средства аналитической деятельности).

Динамическая модель может отражать этапы развития исследуемого процесса.

«Особым видом моделирования, основанного на абстрагировании, считают мысленный эксперимент. В таком эксперименте исследователь на основе теоретических знаний об объективном мире и эмпирических данных создает идеальные объекты, соотносит их в определенной динамической модели, имитируя мысленно то движение и те ситуации, которые могли бы иметь место в реальном экспериментировании. При этом идеальные модели и объекты помогают в “чистом” виде выявить наиболее важные для познающего, существенные связи и отношения, проиграть проектируемые ситуации, отсеять неэффективные или слишком рискованные варианты» .

В экспериментальной работе целесообразно провести структурнологическое моделирование эксперимента, мысленно пройдя весь предстоящий путь, описав предполагаемые результаты и затруднения, прогнозируя риски и отсроченные позитивные и негативные моменты, сопутствующие эксперименту. Такой подход важен для управления экспериментом. Существует понятие «идеальная модель», смысл которого заключается не в том, что автор создал нечто совершенное, никому не доступное, а в том, что автор постарался в модели исключить все негативные моменты, предусмотреть все проблемные аспекты, синтезировать новейшие теории и практики, т.е. создал «свой идеал» .

Моделирование рассматривают как особую деятельность по построению, конструированию моделей с определенной целью. Она имеет внешнее практическое содержание и внутреннюю психическую сущность. Как психическая деятельность моделирование включает психические процессы: восприятие, представление, память, воображение, мышление . Следовательно, при моделировании наряду с оригиналом и моделью рассматривается еще и субъект (человек). Именно от его интеллектуальной деятельности зависит отношение между оригиналом и моделью.

Во всех случаях между моделью и моделируемым объектом (оригиналом) есть определенное отношение - модельное отношение. Это отношение показывает, в каком смысле оригинал и его модель подобны, аналогичны. Модель и оригинал всегда отличны, но что-то или в каком-то отношении аналогично. Обнаруженный в модели некоторый признак (свойство) присущ и оригиналу.

Модель есть средство познания, основанное на аналогии, но аналогия не тождество. Несовпадение модели и оригинала наблюдается главным образом в том, что модель, воспроизводя структуру оригинала, упрощает его, отвлекаясь от несущественного.

Каждый характеризующий явление фактор должен получить в модели точное определение, которое должно быть стабильным в течение всего рассуждения.

Модели всегда строятся или выбираются человеком для определенной цели, поэтому разные люди могут построить разные модели для одного и того же объекта.

Таким образом, модель - это результат познания (промежуточный этап построения теории объекта). Это посредник между субъектом и объектом. Процесс моделирования включает три элемента: субъект (исследователь) и объект исследования, модель, определяющую или отражающую отношения познающего субъекта и познаваемого объекта.

Таким образом, модель отражает предмет не непосредственно, а через совокупность целенаправленных действий субъекта:

  • - конструирование модели;
  • - экспериментальный и (или) теоретический анализ модели;
  • - сопоставление результатов анализа с характеристиками оригинала;
  • - обнаружение расхождений между ними;
  • - корректировка модели;
  • - интерпретация полученной информации, объяснение обнаруженных свойств, связей;
  • - практическая проверка результатов моделирования.

В обобщенном виде процесс моделирования можно условно представить четырьмя этапами.

Первый этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обуславливаются тем, что модель отображает (воспроизводит, имитирует) какие-либо существенные черты объекта-оригинала. При этом изучение одних сторон моделируемого объекта осуществляется ценой отказа от других.

Второй этап характеризуется тем, что модель выступает как самостоятельный объект исследования, когда одной из форм такого исследования является проведение «модельных» экспериментов. При этом изменяются условия применения модели и фиксируются полученные данные.

На третьем этапе осуществляется перенос знаний с модели на оригинал, осуществляется корректировка знаний о модели с учетом свойств оригинала.

Четвертый этап - это практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им (Б. А. Глинский, Е. Н. Грязнов, Е. Н. Никитин, Б. С. Дынин).

Моделирование - цикличный процесс, это означает, что за первым четырехэтапным циклом может последовать второй, третий и т.д. Знания об исследуемом объекте расширяются, уточняются, дополняются и углубляются при каждом новом цикле.

Любая созданная человеком модель относительно завершена. Чем дальше и глубже осуществляется поиск, тем совершенней будет модель. В результате исследования появляются модель первого порядка, модель второго порядка... модель N-ro порядка. Первая модель создается на основе интуиции, наблюдений, первичных представлений исследователя; вторая модель - в результате проведения пилотажного исследования (анкета, опрос, тестирование, беседа со специалистами и др.); третья модель - по итогам экспериментальной работы; четвертая - в процессе апробации модели в новых условиях. Каждая последующая модель более точно отражает существенные связи объекта-оригинала.

В последние годы моделирование прочно вошло в образовательную практику. Расцвет инновационной деятельности в конце XX в. породил весьма широкий спектр моделей образовательных процессов, концептуальных моделей и т.п. Сегодня можно говорить о наличии в образовании многих моделей, которые представляют собой понимание автором того или иного развития какого-либо объекта. На основе этой теоретической модели создается действующая модель, реально влияющая на образовательную практику . Например, модель предпрофиль- ной подготовки учащихся (Л. Н. Серебренников).

Моделью может стать и реально существующая (зародившаяся и развивающаяся) образовательная практика, которая возникла не на основе теории, а на базе опыта, здоровой интуиции и разума. Затем она приобрела яркое, качественно выраженное своеобразие: теоретически описанная, она стала моделью, способной к переносу , например, концепция и модель обучения в разновозрастных группах (Л. В. Байбородова).

Часто моделирование педагогических систем ограничивается созданием концептуальной модели объекта, которая не может использоваться для прогнозирования их развития. В такой модели содержится ряд предположений, требующих экспериментальной проверки, являющейся неотъемлемой частью любого педагогического исследования. Они должны раскрывать конструктивные начала для преобразования практики и прогнозирования оптимальных путей развития педагогической системы.

Как отмечалось, моделирование служит также задаче конструирования нового, не существующего еще в практике. «Исследователь, изучив характерные черты реальных процессов и их тенденций, ищет на основе ключевой идеи их новые сочетания, делает их мысленную перекомпоновку, т.е. моделирует требующееся состояние изучаемой системы. Создаются модели-гипотезы, вскрывающие механизмы и между компонентами изучаемого, и на этой основе строятся рекомендации и выводы, проверяемые затем на практике. Таковы, в частности, и проектируемые модели новых типов образовательных заведений: дифференцированной школы с разноуровневым обучением, гимназии, лицея, колледжа, микрорайонного социального центра и др. В каждой из этих моделей своеобразно синтезирован опыт прошлого, заимствованные из известных образцов черты настоящего, предположения об эффективных нововведениях. Необходимо только помнить, что любая модель всегда беднее оригинала. Она отражает лишь его отдельные стороны и связи, так как теоретическое моделирование всегда включает абстрагирование» .

Эффективность моделирования определяется после проверки модели. Если применение модели для указанной цели оказалось, по мнению исследователя, успешным, соответствующим определенным критериям, то выбор модели был успешным.

Хотя модель имеет много положительных моментов, несомненна ограниченность модельных представлений. Любая модель - это лишь изобретение автора; она, конечно, улучшает наше понимание тех или иных процессов, но, безусловно, ограничена, не исчерпывает всю полноту процесса, явления, объекта .

Чтобы избежать ошибки в использовании метода моделирования, исследователю необходимо учитывать следующее:

  • - моделирование - не самоцель, оно должно способствовать исследованию проблемы;
  • - этот метод сочетается с другими методами исследования;
  • - эффективность использования метода зависит от многих психических и мыслительных процессов исследователя;
  • - никогда нельзя быть уверенным в адекватности модели, не существует строгого метода доказательства существования отношения гомоморфизма (обычно гомоморфизм обосновывается индуктивно, что чревато ошибками);
  • - объект моделирования может быть подвержен изменениям, модель, успешно работавшая в прошлом, не обязательно окажется полезной в настоящем;
  • - границы применимости модели, как правило, неизвестны, результаты одних модельных экспериментов могут быть полезными, других - нет.

Современное педагогическое исследование трудно провести, не используя метод моделирования. Подлинно научный характер исследование приобретает в том случае, если педагог на основе результатов изучения строит особый объект обобщенного и абстрактного представления, схему изучаемого явления (модель явления).

Вопросы для самопроверки и обсуждения

  • 1. В каких случаях используется метод моделирования?
  • 2. Назовите классификации моделей. Какие из моделей вы будете использовать в своем исследовании?
  • 3. Каковы этапы моделирования?
  • 4. Какие вспомогательные методы исследования вы будете использовать при моделировании?
  • 5. Какова общая структура модели педагогического процесса?
  • 6. Какие ошибки могут быть допущены при использовании метода моделирования и как их избежать?

Практические задания

  • 1. В материале для практического задания представлены схемы «Развитие самоуправления в детском коллективе» и «Модель развития эстетического отношения к действительности у детей в театральном объединении» (М. И. Рожков) (схема 1.6). Можно ли данные схемы рассматривать как модели? Почему? Охарактеризуйте их, используя материал главы.
  • 2. Представьте исследуемый вами процесс, явление с помощью нескольких моделей.
  • Чечелъ И. Д., Новикова Т. Г. Теория и практика организации экспериментальнойработы в общеобразовательных учреждениях. С. 49.

Основной метод исследования систем для принятия управленческих решений - метод моделирования, т.е, способ теоретического анализа и практического действия, направленный на разработку и использование моделей.

Прежде чем перейти к рассмотрению понятия модели, этапов, особенностей и проблем моделирования, остановимся на объекте моделирования, а именно на понятии «система».

Сущность и свойства социально-экономических систем как объекта моделирования. Центральное понятие кибернетики - понятие «система». Единого определения этого понятия нет; возможна такая формулировка: система - комплекс взаимосвязанных элементов вместе с отношениями между элементами и между их атрибутами. Исследуемое множество элементов можно рассматривать как систему, если выявлены следующие четыре признака :

■ целостность системы, т.е. принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов;

■ наличие цели и критерия исследования данного множества элементов;

■ наличие более крупной, внешней по отношению к данной системы, называемой «средой»;

■ возможность выделения в данной системе взаимосвязанных частей (подсистем).

Под социально-экономической системой понимается сложная веро­ятностная динамическая система, охватывающая процессы производства, обмена, распределения и потребления материальных и других благ.

Социально-экономические системы относятся, как правило, к так называемым сложным системам. Сложные системы в экономике обладают рядом свойств, которые необходимо учитывать при их моделировании, иначе невозможно говорить об адекватности построенной экономической модели, т.е. ее соответствии моделируемому объекту или процессу .

Свойства сложных систем, которые необходимо учитывать при моделировании:

■ эмерджентность как проявление в наиболее яркой форме свойства целостности системы, т.е. наличие у экономической системы таких свойств, которые не присущи ни одному из составляющих систему элементов, взятому в отдельности. Эмерджентность есть результат возникновения между элементами системы так называемых синергических связей, которые обеспечивают увеличение общего эффекта до величины, большей, чем сумма эффектов элементов системы, действующих независимо. Поэтому социально-экономические системы необходимо исследовать и моделировать в целом;

■ массовый характер экономических явлений и процессов - закономерности экономических процессов не обнаруживаются на основании небольшого числа наблюдений, поэтому моделирование в экономике должно опираться на массовые наблюдения;

■ динамичность экономических процессов, заключающаяся в из­менении параметров и структуры экономических систем под влиянием среды (внешних факторов);

■ случайность и неопределенность в развитии экономических явлений, поэтому экономические явления и процессы носят в основном вероятностный характер и для их изучения необходимо применение экономико-математических моделей на базе теории вероятностей и математической статистики;

■ невозможность изолировать протекающие в экономических системах явления и процессы от окружающей среды, чтобы наблюдать и исследовать их в чистом виде;

■ активная реакция на появляющиеся новые факторы, способность социально-экономических систем к активным, не всегда предсказуемым действиям в зависимости от отношения системы к этим факторам, способам и методам их воздействия.

Выделенные свойства социально-экономических систем, естественно, осложняют процесс их моделирования, однако эти свойства следует постоянно иметь в виду при рассмотрении различных аспектов эконо­мико-математического моделирования, начиная с выбора типа модели и кончая вопросами практического использования результатов моделирования.

Основной метод исследования систем - метод моделирования. Остановимся подробнее на понятии, классификации моделей, процессе моделирования.

Понятие модели, причины использования моделей. По определению Шеннона: «Модель - это представление объекта, системы или идеи в некоторой форме, отличной от самой целостности» .

Модель - это образ реального объекта (процесса) в материальной или идеальной форме (описанный знаковыми средствами или на каком-либо языке), отражающий существенные свойства моделируемого объекта (процесса) и замещающий его в ходе исследования и управления .

Главной характеристикой модели можно считать упрощение реаль­ной жизненной ситуации, к которой она относится. Поскольку форма модели менее сложна, а не относящиеся к делу данные, затуманивающие проблему в реальной жизни, устраняются, модель зачастую повышает способность руководителя к пониманию и разрешению встающих перед ним проблем. Модель также помогает руководителю совместить свой опыт и способность к суждению с опытом и суждениями экспертов.

Существует ряд. причин, обусловливающих использование модели вместо попыток прямого взаимодействия с реальным миром .

Сложность организационных ситуаций. Как все школы управления, наука управления стремится быть полезной в разрешении организационных проблем реального мира. Может показаться странным, что воз­можности человека повышаются при взаимодействии с реальностью с помощью ее модели. Но это так, поскольку реальный мир организации исключительно сложен и фактическое число переменных, относящихся к конкретной проблеме, значительно превосходит возможности любого человека, и постичь его можно, лишь упростив реальный мир с помощью моделирования.

Невозможность проведения экспериментов. Встречается множество управленческих ситуаций, в которых необходимо опробовать и экспе­риментально проверить альтернативные варианты решения проблемы. Конечно, руководители фирмы были бы не правы, если бы вложили миллионы долларов в новое изделие, не установив экспериментально, что результат его появления на рынке будет таким, как намечено, и, вероятно, оно будет принято потребителями. Определенные эксперименты в условиях реального мира могут и должны иметь место. При проектировании сложной, высокотехнологичной продукции должен изготавливаться образец, затем проверяться в реальных условиях, и только потом возможно его полномасштабное производство. Но прямое экспериментирование такого типа дорого стоит и требует времени. Здесь на помощь приходят модели.

Кроме того, существуют бесчисленные критические ситуации, когда требуется принять решение, но нельзя экспериментировать в реальной жизни. К примеру, когда фирма «Фольксваген» решила построить производственное предприятие в США, ей пришлось выбирать место с достаточным обеспечением рабочей силой, благоприятными условиями налогообложения и экономически подходящее с точки зрения приемки необходимых материалов и отгрузки готовых автомобилей. Ей пришлось затем определять последовательность сборки многих тысяч деталей модели «Рэббит», выяснять, какие детали завод мог бы производить сам, а какие должны быть куплены, устанавливать необходимые уровни запасов каждой детали. Ясно, что фирма не могла решить эти проблемы, построив в порядке эксперимента в каждом возможном месте по заводу, да еще и по нескольким проектам .

Ориентация управления на будущее. Невозможно наблюдать явление, которое еще не существует и, может быть, никогда не будет существовать. Однако многие руководители стремятся рассматривать только реальное и осязаемое, и это в конечном счете должно выразиться в их обращении к чему-то видимому. Моделирование -единственный к настоящему времени систематизированный способ увидеть варианты будущего и определить потенциальные последствия альтернативных решений, что позволяет их объективно сравнивать.

Модели науки управления в наибольшей мере приспособлены к этим целям и как мощное аналитическое средство позволяют преодолевать множество проблем, связанных с принятием решений в сложных ситуациях.

Типы моделей.В настоящее время существует множество используемых современными организациями моделей, а также задач, для решения которых они наиболее пригодны, однако можно выделить три базовых типа моделей. Речь идет о физических, аналоговых и математических моделях .

Физическая модель представляет то, что исследуется с помощью уве­личенного или уменьшенного описания объекта или системы.

Примеры физической модели - синька чертежа завода, его уменьшенная фактическая модель, уменьшенный в определенном масштабе чертеж проектировщика. Такая физическая модель упрощает визуальное восприятие и помогает установить, сможет ли конкретное оборудо­вание физически разместиться в пределах отведенного для него места, а также разрешить сопряженные проблемы, например размещение дверей, ускоряющее движение людей и материалов.

Автомобильные и авиационные предприятия всегда изготавливают физические уменьшенные копии новых средств передвижения, чтобы проверить определенные характеристики, например аэродинамическое сопротивление. Будучи точной копией, модель должна вести себя аналогично разрабатываемому новому автомобилю или самолету, но при этом ее стоимость много меньше настоящего. Подобным образом строительная компания всегда строит миниатюрную модель, прежде чем начать строительство производственного или административного корпуса или склада.

Аналоговая модель представляет исследуемый объект аналогом, который ведет себя как реальный объект, но не выглядит как таковой. График, иллюстрирующий соотношения между объемом производства и издержками, - это аналоговая модель. График показывает, как уровень производства влияет на издержки.

Другой пример аналоговой модели - организационная схема. Выстраивая ее, руководство в состоянии легко представить себе цепи прохождения команд и формальную зависимость между индивидами и деятельностью. Такая аналоговая модель явно более простой и эффективный способ восприятия и определения сложных взаимосвязей структуры крупной организации, чем, скажем, составление перечня взаимосвязей всех работников.

В математической модели , называемой также символической, ис­пользуются символы для описания свойств или характеристик объекта или события. Пример математической модели и ее аналитической силы как средства, помогающего нам понимать исключительно сложные проблемы, - известная формула Эйнштейна Е = тс 2 . Если бы Эйнштейн не смог построить эту математическую модель, в которой символы заменяют реальность, маловероятно, чтобы у физиков появилась даже отдаленная идея о взаимосвязи материи и энергии.

Задачи экономико-математического моделирования. Практические задачи экономико-математического моделирования таковы:

■ анализ экономических объектов и процессов;

■ экономическое прогнозирование, предвидение развития экономических процессов;

■ выработка управленческих решений на всех уровнях хозяйственной иерархии.

Следует, однако, иметь в виду, что далеко не во всех случаях данные, полученные в результате экономико-математического моделирования, могут использоваться непосредственно как готовые управленческие решения. Они скорее могут быть рассмотрены как «консультирующие» средства. Принятие управленческих решений остается за человеком. Таким образом, экономико-математическое моделирование лишь один из компонентов (пусть очень важный) в человеко-машинных системах планирования и управления экономическими системами.

Процесс построения модели. Построение модели - это процесс, имеющий определенные основные этапы .

Постановка задачи. Первый и наиболее важный этап построения модели, способный обеспечить правильное решение управленческой проблемы, состоит в постановке задачи. Правильное использование математики или компьютера не принесет никакой пользы, если сама проблема не будет точно диагностирована. Как заметил К. Э. Шеннон: «Альберт Эйнштейн однажды сказал, что правильная постановка задачи важнее даже, чем ее решение. Для нахождения приемлемого или оптимального решения задачи нужно знать, в чем она состоит. Как ни просто и прозрачно данное утверждение, чересчур многие специалисты в науке управления игнорируют очевидное. Миллионы долларов расходуются ежегодно на поиск элегантных и глубокомысленных ответов на неверно поставленные вопросы».

Из того только, что руководитель осведомлен о наличии проблемы как таковой, вовсе не следует факт идентификации истинной проблемы. Руководитель обязан уметь отличать симптомы от причин. Рассмотрим для примера фармацевтическую компанию, получавшую множество жалоб от аптек на задержки с выполнением их заказов. Истинная проблема была, как оказалось, не в самой задержке. Изучение вопроса показало, что заказы задерживаются из-за производственных затруднений на трех химических предприятиях фирмы, вызванных нехваткой исходных химических реагентов и запасных частей к оборудованию, что в свою очередь было обусловлено некачественным прогнозированием потребности в материалах и запасных частях.

Построение модели. После правильной постановки задачи следующий этап процесса - построение модели. Разработчик должен определить главную цель модели, а также какие выходные нормативы или информацию предполагается получить, используя модель, чтобы помочь руководству разрешить стоящую перед ним проблему. Если продолжить приведенный выше пример, нужная выходная информация должна представлять точные нормативы времени и количества подлежащих заказу исходных материалов и запасных частей. В дополнение к постановке главных целей специалист по науке управ­ления должен определить, какая информация требуется для постро­ения модели, удовлетворяющей этим целям и выдающей на выходе нужные сведения. В нашем случае необходимой информацией будет точный прогноз потребности по каждому исходному реагенту, сведения о характере закупаемых материалов для каждого вида продукции, ожидаемой долговечности деталей оборудования, сроке службы каждой детали и т.п.

Может случиться, что эта необходимая информация разбросана по многим источникам.

К другим факторам, требующим учета при построении модели, следует отнести расходы и реакцию людей. Модель, которая стоит больше, чем вся задача, требующая решения с помощью модели, конечно, не внесет никакого вклада в достижение целей организации. Подобным образом, излишне сложная модель может быть воспринята конечными пользователями как угроза и отвергнута ими.

Таким образом, для построения эффективной модели руководителям и специалистам по науке управления следует работать вместе, взаимно увязывая потребности каждой стороны.

Проверка модели на достоверность. После построения модели ее следует проверить на достоверность. Один из аспектов проверки заключается в определении степени соответствия модели реальному миру. Специалист по науке управления должен установить, всели существенные компоненты реальной ситуации встроены в модель. Это, конечно, может оказаться непростым делом. Проверка многих моделей управления показала, что они несовершенны, поскольку не охватывают всех релевантных переменных. Естественно, чем лучше модель отражает реальный мир, тем выше ее потенциал как средства оказания помощи руководителю в принятии хорошего решения. Однако модель не должна быть сложной в использовании.

Второй аспект проверки модели связан с установлением степени, в которой информация, получаемая с ее помощью, действительно помогает руководству решить проблему.

Продолжим наш пример. Если модель для фармацевтической фирмы действительно снабдила руководство достоверной информацией о том, как часто и в каких количествах следует заказывать материалы и запасные части, ее можно считать полезной, поскольку выходная информация позволит руководству принять эффективные корректирующие меры в отношении задержек поставок.

Хороший способ проверки модели заключается в опробовании ее на ситуации из прошлого. Фармацевтическая фирма могла бы приложить свою модель к разрешению проблемы запасов за последние три года. Если модель точна, решение проблемы запасов с использованием конкретных количественных и временных показателей должно выявить конкретные причины, приведшие к задержкам. Руководство могло бы также определить, смогла ли полученная на модели информация (если бы ее удалось получить) помочь в разрешении производственных трудностей и ликвидации задержек.

Применение модели. После проверки на достоверность модель готова к использованию. Это кажется очевидным, но зачастую этот этап оказывается одним из самых тревожных моментов построения модели. Согласно обследованию отделов, анализирующих операции на корпоративном уровне, лишь около 60 % моделей науки управления были использованы в полной или почти полной мере. В других обследованиях также установлено, что финансовые руководители американских корпораций и западно-европейские управляющие маркетингом недостаточно широко используют модели для принятия решений. Основная причина недоиспользования моделей руководителями, возможно, заключается в том, что они их опасаются или не понимают.

Если модели науки управления создаются специалистами штабных служб (а так обычно и бывает), линейные руководители, для которых они предназначены, должны принимать участие в постановке задачи и определении требований по информации, получаемой благодаря модели. Согласно исследованиям, когда это имеет место, применение моделей увеличивается на 50 %. Кроме того, руководителей следует научить использовать модели, объяснив среди прочего, как модель функционирует, каковы ее потенциальные возможности и ограничения.

Обновление модели. Даже если применение модели оказалось успешным, почти наверняка она потребует обновления. Руководство может обнаружить, что форма выходных данных неясна или желательны дополнительные данные. Если цели организации изменяются таким образом, что это влияет на критерии принятия решений, модель необходимо соответствующим образом модифицировать. Аналогичным образом, изменение во внешнем окружении, например появление новых потребителей, поставщиков или технологии, может обесценить до­пущения и исходную информацию, на которых основывалась модель при построении.

Этапы процесса экономико-математического моделирования. Перейдем теперь непосредственно к процессу экономико-математического моделирования, т.е. описания экономических и социальных систем и процессов в виде экономико-математических моделей. Эта разновидность моделирования обладает рядом существенных особенностей, связанных как с объектом моделирования, так и с применяемыми аппаратом и средствами моделирования, поэтому целесообразно более детально проанализировать последовательность и содержание его этапов .

Постановка экономической проблемы и ее качественный анализ. На этом этапе требуется сформулировать сущность проблемы, принимаемые предпосылки и допущения. Необходимо выделить важнейшие черты и свойства моделируемого объекта, изучить его структуру и взаимосвязь его элементов, хотя бы предварительно сформулировать гипотезы, объясняющие поведение и развитие объекта.

Построение математической модели. Это этап формализации эконо­мической проблемы, т.е. выражения ее в виде конкретных математических зависимостей (функций, уравнений, неравенств и др.). Процесс построения модели проходит в свою очередь несколько стадий. Сначала определяется тип экономико-математической модели, изучаются возможности ее применения в данной задаче, уточняются конкретный перечень переменных и параметров и форма связей. Для некоторых сложных объектов целесообразно строить несколько разноаспектных моделей. При этом каждая модель выделяет лишь некоторые стороны объекта, а другие стороны учитываются агрегированно и приближенно.

Оправдано стремление построить модель, относящуюся к хорошо изученному классу математических задач, что может потребовать некоторого упрощения исходных предпосылок модели, не искажающего основных черт моделируемого объекта. Однако возможна и такая ситуация, когда формализация проблемы приводит к неизвестной ранее математической структуре.

Математический анализ модели. На этом этапе чисто математическими приемами исследования выявляются общие свойства модели и ее решения. В частности, важный момент - доказательство существования решения сформулированной задачи. При аналитическом исследовании выясняется, единственно ли решение, какие переменные могут входить в решение, в каких пределах они изменяются, каковы

тенденции их изменения и т.д. Однако модели сложных экономических объектов с большим трудом поддаются аналитическому исследованию. В таких случаях переходят к численным методам исследования.

Подготовка исходной информации. В экономических задачах это, как правило, наиболее трудоемкий этап моделирования, так как дело не сводится к пассивному сбору данных. Математическое моделирование предъявляет жесткие требования к системе информации. Кроме того, надо принимать во внимание не только принципиальную возможность подготовки информации требуемого качества, но и затраты на подготовку информационных массивов.

В процессе подготовки информации используются методы теории вероятностей, теоретической и математической статистики для организации выборочных обследований, оценки достоверности данных и т.д. При системном экономико-математическом моделировании результаты функционирования одних моделей служат исходной информацией для других.

Численное решение. Этот этап включает разработку алгоритмов численного решения задачи, подготовку программ на ЭВМ и непосредственное проведение расчетов; при этом значительную трудность составляет большая размерность экономических задач. Обычно расчеты на основе экономико-математической модели носят многовариантный характер. Многочисленные модельные эксперименты, изучение пове­дения модели при различных условиях возможно проводить благодаря быстродействию современных ЭВМ. Численное решение существенно дополняет результаты аналитического исследования, а для многих моделей - единственно возможное.

Анализ численных результатов и их применение. На этом этапе прежде всего решается важнейший вопрос о правильности и полноте результатов моделирования и применимости их как в практической деятельности, так и в целях усовершенствования модели, поэтому в первую очередь должна быть проведена проверка адекватности модели по тем свойствам, которые выбраны в качестве существенных. Другими словами, должны быть произведены верификация (проверка правильности структуры модели) и ее валидация (проверка соответствия данных, полученных на основе модели, реальному процессу).

Перечисленные этапы экономико-математического моделирования находятся в тесной взаимосвязи, в частности могут иметь место возвратные связи этапов. Так, на этапе построения модели может выясниться, что постановка задачи или противоречива, или приводит к слишком сложной математической модели. В этом случае исходная постановка задачи должна быть скорректирована.

По степени агрегирования объектов моделирования модели делятся на макроэкономические и микроэкономические, хотя между ними и нет четкого разграничения. К первым из них относят модели, отражающие функционирование экономики как единого целого, в то время как мик­роэкономические модели связаны, как правило, с такими звеньями эко­номики, как предприятия и фирмы.

По конкретному предназначению, т. е. по цели создания и применения, выделяют:

■ балансовые модели, выражающие требование соответствия наличия ресурсов и их использования;

■ трендовые модели, в которых развитие моделируемой экономической системы отражается через тренд (длительную тенденцию) ее основных показателей;

■ оптимизационные модели, предназначенные для выбора наилучшего варианта из определенного числа вариантов производства, распределения или потребления;

■ имитационные модели, предназначенные для использования в процессе машинной имитации изучаемых систем или процессов, и др.

По типу информации, используемой в модели, экономико-математические модели делятся на аналитические, построенные на априорной информации, и идентифицируемые, построенные на апостериорной информации.

По учету фактора времени модели подразделяются на статические, в которых все зависимости отнесены к одному моменту времени, и ди­намические, описывающие экономические системы в развитии.

По учету фактора неопределенности модели делятся на детермини­рованные, если в них результаты на выходе однозначно определяются управляющими воздействиями, и стохастические (вероятностные), если при задании на входе модели определенной совокупности значений на ее выходе могут получаться различные результаты в зависимости от дей­ствия случайного фактора.

По типу математического аппарата, используемого в модели, т.е. по характеристике математических объектов, включенных в модель, могут быть выделены матричные модели, модели линейного и нелинейного программирования, корреляционно-регрессионные модели, модели теории массового обслуживания, модели сетевого планирования и управления, модели теории игр и т.д.

По типу подхода к изучаемым социально-экономическим системам вы­деляют дескриптивные и нормативные модели. При дескриптивном

(описательном) подходе получают модели, предназначенные для описания и объяснения фактически наблюдаемых явлений или для прогноза этих явлений. В качестве примера дескриптивных моделей можно привести названные ранее балансовые и трендовые модели. При нормативном подходе интересуются не тем, каким образом устроена и развивается экономическая система, а тем, как она должна быть устроена и как должна действовать согласно определенным критериям.

Проблемы моделирования. Как все средства и методы, модели науки управления в случае их применения могут привести к ошибкам. Эффек­тивность модели иногда снижается действием ряда потенциальных по­грешностей.

Недостоверные исходные допущения. Любая модель опирается на не-которые исходные допущения, или предпосылки. Это могут быть под­дающиеся оценке предпосылки, например то, что расходы на рабочую силу в следующие шесть месяцев составят 200 тыс. долл. Такие предположения можно объективно проверить и просчитать. Вероятность их точности будет высока. Некоторые предпосылки не поддаются оценке и не могут быть объективно проверены. Предположение о росте сбыта в будущем году на 10 % - пример допущения, не поддающегося проверке. Никто не знает наверняка, произойдет ли это действительно. Поскольку такие предпосылки - основа модели, точность последней зависит от точности предпосылок. Модель нельзя использовать для прогнозирования, например, потребности в запасах, если неточны прогнозы сбыта на предстоящий период.

В дополнение к допущениям по поводу компонентов модели руководитель формулирует предпосылки относительно взаимосвязей внутри нее. К примеру, модель, предназначенная помочь решить, сколько галлонов краски разных типов следует производить, должна, вероятно, включать допущение относительно зависимости между продажной ценой и прибылью, а также стоимостью материалов и рабочей силы. Точность модели зависит также от точности этих взаимосвязей.

Информационные ограничения. Основная причина недостоверности предпосылок и других затруднений - ограниченные возможности в получении нужной информации, которые влияют и на построение, и на использование моделей. Точность модели определяется точностью информации по проблеме. Если ситуация исключительно сложна, специалист по науке управления может быть не в состоянии получить информацию по всем релевантным факторам или встроить ее в модель. Если внешняя среда подвижна, информацию о ней следует обновлять быстро, но это может быть нереализуемо или непрактично.

Иногда при построении модели игнорируются существенные аспекты, поскольку они не поддаются измерению. Например, модель определения эффективности новой технологии будет некорректной, если в нее встроена только информация о снижении издержек в соответствии с увеличением специализации. В общем, построение модели наиболее затруднительно в условиях неопределенности. Когда необходимая информация настолько неопределенна, что ее трудно получить исходя из критерия объективности, руководителю, возможно, целесообразнее положиться на свой опыт, способность к суждению, интуицию и помощь консультантов.

Страх пользователей. Модель нельзя считать эффективной, если ею не пользуются. Основная причина неиспользования модели заключается в том, что руководители, которым она предназначена, могут не вполне понимать получаемые с помощью модели результаты и потому боятся ее применять. Для борьбы с этим возможным страхом специалистам по количественным методам анализа следует значительно больше времени уделять ознакомлению руководителей с возможностями и порядком использования моделей. Руководители должны быть подготовлены к применению моделей, а высшему руководству следует подчеркивать, насколько успех организации зависит от моделей и как они повышают способность руководителей эффективно планировать и контролировать работу организации.

Слабое использование на практике. Согласно ряду исследований уровень методов моделирования в рамках науки управления превосходит уровень использования моделей. Как указывалось выше, одна из причин такого положения дел - страх. Другими причинами могут быть недостаток знаний и сопротивление переменам. Данная проблема подкрепляет желательность того, чтобы на стадии построения модели штабные специалисты привлекали к этому пользователей. Когда люди имеют возможность обсудить и лучше понять вопрос, метод или предполагаемое изменение, их сопротивление обычно снижается.

Чрезмерная стоимость. Выгоды от использования модели, как и других методов управления, должны с избытком оправдывать ее стоимость. При установлении издержек на моделирование руководству следует учи­тывать затраты времени руководителей высшего и низшего уровней на построение модели и сбор информации, расходы, время на обучение, стоимость обработки и хранения информации.

Основные модели, используемые для разработки управленческих реше­ний. Существует огромное множество конкретных моделей, используемых для разработки управленческих решений. Их число также велико,

как и число проблем, для разрешения которых они были разработаны .

В общем виде в составе экономико-математических моделей можно выделить следующие:

■ модели линейного программирования;

■ оптимальные экономико-математические модели (имитационные модели, модели сетевого планирования и управления);

■ модели анализа динамики экономических процессов;

■ модели прогнозирования экономических процессов (трендовые модели на основе кривых роста, адаптивные модели прогнозирования);

■ балансовые модели;

■ эконометрические модели;

■ прочие прикладные модели экономических процессов (модель спроса и предложения, модели управления запасами, модели теории массового обслуживания, модели теории игр).

Рассмотрим подробнее некоторые из перечисленных моделей, наиболее часто использующиеся в практике управления.

Модели теории игр. Одна из важнейших переменных, от которой зависит успех организации, - конкурентоспособность. Очевидно, способность прогнозировать действия конкурентов означает преимущество для любой организации.

Теория игр - это метод моделирования воздействия принятого решения на конкурентов.

Теорию игр изначально разработали военные с тем, чтобы в стратегии можно было учесть возможные действия противника. В бизнесе игровые модели используются для прогнозирования реакции конкурентов на изменение цен, новые кампании поддержки сбыта, предложения дополнительного обслуживания, модификацию и освоение новой продукции. Если, например, с помощью теории игр руководство устанавливает, что при повышении цен конкуренты не сделают того же, оно, вероятно, должно отказаться от этого шага, чтобы не попасть в невыгодное положение в конкурентной борьбе.

Теория игр используется не так часто, как другие описываемые здесь модели, так как ситуации реального мира зачастую очень сложны и настолько быстро изменяются, что невозможно точно спрогнозировать, как отреагируют конкуренты на изменение тактики фирмы. Тем не менее теория игр полезна, когда требуется определить наиболее важные и требующие учета факторы в ситуации принятия решений в условиях конкурентной борьбы. Эта информация важна, поскольку позволяет руководству учесть дополнительные переменные или факторы, могущие повлиять на ситуацию, и тем самым повышает эффективность решения .

■ на размещение заказов;

■ на хранение;

■ потери, связанные с недостаточным уровнем запасов.

Последние имеют место при исчерпании запасов. В этом случае продажа готовой продукции или предоставление обслуживания невозможно, кроме того, возникают потери от простоя производственных линий, в частности в связи с необходимостью оплаты труда работников, хотя они не работают в данный момент.

Поддержание высокого уровня запасов избавляет от потерь. Закупка в больших количествах материалов, необходимых для создания запасов, во многих случаях сводит к минимуму издержки на размещение заказов, поскольку фирма может получить соответствующие скидки и снизить объем «бумажной работы». Однако эти потенциальные выгоды перекрываются дополнительными издержками - расходами на хранение, перегрузку, выплату процентов, затратами на страхование, потерями от порчи, воровства и дополнительными налогами.

Кроме того, руководство должно учитывать возможность связывания оборотных средств избыточными запасами, что препятствует вложению капитала в приносящие прибыль акции, облигации или банковские депозиты. Разработано несколько специфических моделей, помогающих руководству установить, когда и сколько материалов заказывать в запас, какой уровень незавершенного производства и запаса готовой продукции поддерживать .

В наш динамичный век значительно увеличился поток разнообразной информации, получаемой человеком. Соот­ветственно усложняются и интенсифицируются процессы восприятия этой информации. И в сфере образования про­цесс обучения неизбежно должен стать более наглядным и динамичным. Одними из самых эффективных способов обучения являются методы моделирования (реального, математического, наглядного, символического, мыслен­ного). Моделирование исключает формальную передачу знаний - изучение объекта или явления происходит в ходе интенсивной практической и умственной деятельно­сти, развивая мышление и творческие способности чело­века любого возраста.

Скачать:


Предварительный просмотр:

МЕТОД МОДЕЛИРОВАНИЯ

В наш динамичный век значительно увеличился поток разнообразной информации, получаемой человеком. Соответственно усложняются и интенсифицируются процессы восприятия этой информации. И в сфере образования процесс обучения неизбежно должен стать более наглядным и динамичным. Одними из самых эффективных способов обучения являются методы моделирования (реального, математического, наглядного, символического, мысленного). Моделирование исключает формальную передачу знаний - изучение объекта или явления происходит в ходе интенсивной практической и умственной деятельности, развивая мышление и творческие способности человека любого возраста. Понятие «модель» используется во многих областях науки и имеет разные смысловые значения. Модель - это образ какого-либо объекта, созданный в виде схемы, физических конструкций, знаковых форм или формы, отображающей структуру, свойства, взаимосвязи и отношения между элементами этого объекта. Принято условно подразделять модели на три вида:

  • физические (имеющие природу, сходную с оригиналом модели);
  • вещественно-математические (их физическая природа отличается от прототипа, но возможно математическое описание поведения оригинала);

Логико-семиотические (конструируются из специальных знаков, символов и структурных схем).

Существует и более простая классификация, когда модели делятся на материальные и идеальные (мысленные). Моделирование есть метод исследования объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (органических и неорганических систем, инженерных устройств, разнообразных процессов -физических, химических, биологических, социальных) и конструируемых объектов для определения либо улучшения их характеристик, рационализации способов их построения, управления и т. п.

Понятие моделирования в ДОУ

Метод моделирования в педагогике наиболее активно стали применять начиная со второй половины прошлого века (для этого периода характерен серьезный анализ моделирования как гносеологической проблемы). Моделирование используется как: способ описания педагогического явления; средство научного исследования: предмет исследования; средство деятельности и т. д.

В дошкольной педагогике модель является в первую очередь инструментом познания. Когда дети строят различные модели изучаемых явлений, моделирование выступает в роли средства и способа обобщения учебного материала. Выделяют модель обучения, которая определяется как педагогическая техника, система методов и организационных форм обучения, составляющих дидактическую основу модели.

Модель образования - это сформированные посредством знаковых систем мыслительные аналоги (логические конструкты), схематично отображающие образовательную практику в целом или отдельные ее фрагменты. Модели образования подразделяются на три вида:

  • описательные, дающие представление о сути, структуре, основных элементах образовательной практики;
  • функциональные, отображающие образование в системе его связей с социальной средой;
  • прогностические, дающие теоретически аргументированную картину будущего состояния образовательной практики.

Термин «образовательная модель» применяется для такого круга вопросов, как построение учебных планов и программ, управление образованием, подбор критериев эффективности образовательной технологии, видов и способов контроля и т. д.

Сущность метода моделирования в педагогике заключается в изучении перспективы развития объектов панной науки с помощью модели-образца и в переносе полученных результатов на сам объект. Метод моделирования реализуется посредством множества приемов, соответствующих этапу моделирования. К таким приемам относятся:

а) морфологический анализ - упорядоченное, последовательное и детальное изучение всех возможных вариантов решения задачи. Применяется разновидность такого анализа - «дерево целей»;

б) программирование - анализ определенной логической последовательности смены стадий развития прогнозируемого объекта и выбор наиболее оптимальных вариантов пути от цели к результату;

в) составление прогнозного сценария -- установление логической

последовательности вероятностных событий и их последствий.

В педагогическом прогнозировании используются также методы экстраполяции и экспертных оценок. Моделирование, экстраполяция и экспертное оценивание обеспечивают необходимую комплексность схеме прогнозирования.

Особое значение имеет верификация модели - специалъная исследовательская процедура для выявления степени достоверности результатов прогнозирования. Под достоверностью при этом понимается вероятности осуществления прогноза в заданном временном вале. Объектами верификации выступают все компоненты прогностического процесса: источники информации основания прогнозирования, методы и способы прогнозирования, содержание прогноза как результат.

Наглядное моделирование

Метод наглядного моделирования (макетирования) развивает пространственное воображение, позволяет воспринимать сложную информацию и зрительно представить абстрактные понятия. Наглядное моделирование - воспроизведение существенных свойств изучаемого объекта, создание его заместителя и работа ним. Одним из примеров использования метода является, например, коррекция связной монологической речи дошкольников, особенно с ОНР. При этом в процессе обучения вводятся; система подготовительных упражнений, направленных на осознанное усвоение правил организации композиции высказывания; специальные приемы обучения детей действиям замещения; различные модели, схемы, передающие предметно- смысловую и логическую организацию текста; упражнения по нахождению различных вариативных средств связи предложений, что позволяет решить задачи с усвоением правил смысловой и лексико-синтаксической организации текстовых сообщений. В процессе использования метода наглядного моделирования в коррекции речи детей с ОНР вводится понятие о графическом способе изображения действия различных рассказов. В качестве условных заместителей (элементов модели) выступают си волы разнообразного характера:

Геометрические фигуры;

  • символические изображения предметов (условные обозначения силуэты, контуры, пиктограммы);
  • контрастная рамка - прием фрагментарного рассказывания и многие другие.

В качестве символов-заместителей на начальном этапе работы используются геометрические фигуры, своей формой и цветом напоминающие замещаемый предмет. Например, оранжевый треугольник - морковка, коричневый овал - собака и т. п. На последующих этапах дети выбирают заместители без учета внешних признаков объекта. В этом случае они ориентируются на качественные характеристики объекта (добрый, печальный, теплый, влажный и т. п.).

В качестве символов-заместителей при моделировании творческих рассказов используются:

  • предметные изображения, картинки;
  • силуэтные изображения;
  • геометрические фигуры.

Таким образом, модель, состоящая из различных фигур или предметов, становится планом связного высказывания ребенка с ОНР и обеспечивает последовательность его рассказа.


Загрузка...
Top