Электронная схема управления оборотами электродвигателя 12в. Мощный шим регулятор

Эта самодельная схема может быть использована в качестве регулятора скорости для двигателя постоянного тока 12 В с номинальным током до 5 А или как диммер для 12 В галогенных и светодиодных ламп мощностью до 50 Вт. Управление идёт с помощью широтно-импульсной модуляции (ШИМ) при частоте следования импульсов около 200 Гц. Естественно частоту можно при необходимости изменить, подобрав по максимальной стабильности и КПД.

Большинство подобных конструкций собирается по гораздо . Здесь же представляем более усовершенствованный вариант, который использует таймер 7555, драйвер на биполярных транзисторах и мощный полевой MOSFET. Такая схематика обеспечивает улучшенное регулирование скорости и работает в широком диапазоне нагрузки. Это действительно очень эффективная схема и стоимость её деталей при покупке для самостоятельной сборки довольно низкая.

В схеме используется Таймер 7555 для создания переменной ширины импульсов около 200 Гц. Он управляет транзистором Q3 (через транзисторы Q1 - Q2), который контролирует скорость электро двигателя или ламп освещения.



Есть много применений для этой схемы, которые будут питаться от 12 В: электродвигатели, вентиляторы или лампы. Использовать её можно в автомобилях, лодках и электротранспортных средствах, в моделях железных дорог и так далее.


Светодиодные лампы на 12 В, например LED ленты, тоже можно смело сюда подключать. Все знают, что светодиодные лампы гораздо более эффективны, чем галогенные или накаливания, они прослужит намного дольше. А если надо - питайте ШИМ-контроллер от 24 и более вольт, так как сама микросхема с буферным каскадом имеют стабилизатор питания.

В любом современном электроинструменте или бытовом приборе используется коллекторный двигатель. Это связано с их универсальностью, т. е. способностью работать как от переменного, так и от постоянного напряжения. Ещё одно преимущество заключается эффективном пусковом моменте.

Однако высокая частота оборотов коллекторного двигателя устраивает далеко не всех пользователей. Для плавности пуска и возможности менять частоту вращений был изобретён регулятор , который вполне возможно изготовить своими руками.

Принцип работы и разновидности коллекторных двигателей

Каждый электродвигатель состоит из коллектора, статора, ротора и щёток. Принцип его работы довольно прост:

Помимо стандартного устройства также существуют:

Устройство регулятора

В мире существует множество схем таких устройств. Тем не менее всех их можно разделить на 2 группы: стандартные и модифицированные изделия.

Стандартное устройство

Типичные изделия отличаются простотой в изготовлении идинистора, хорошей надёжностью при изменении оборотов двигателя. Как правило, такие модели основываются на тиристорных регуляторах. Принцип работы подобных схем достаточно прост:

Таким образом, происходит регулировка оборотов коллекторного двигателя. В большинстве случаев подобную схему используют в зарубежных бытовых пылесосах. Однако следует знать, что такой регулятор оборотов не обладает обратной связью. Поэтому при изменении нагрузки придётся настраивать обороты электродвигателя.

Изменённые схемы

Конечно, стандартное устройство устраивает многих любителей регуляторов оборотов «покопаться» в электронике. Однако, без прогресса и улучшения изделий мы бы до сих пор жили в каменном веке. Поэтому постоянно изобретаются более интересные схемы, которые с удовольствием применяют многие производители.

Чаще всего используются реостатные и интегральные регуляторы. Как понятно из названия, первый вариант основан на реостатной схеме. Во втором же случае применяется интегральный таймер.

Реостатные отличаются эффективностью в смене количества оборотов коллекторного двигателя. Высокая эффективность обусловлена силовыми транзисторами, которые забирают часть напряжения. Таким образом, снижается поступление тока и двигатель работает с меньшим усердием.

Видео: устройство регулятора оборотов с поддержанием мощности

Главный недостаток такой схемы заключается в большом объёме выделяемого тепла. Поэтому для бесперебойной работы, регулятор должен постоянно охлаждаться. Притом охлаждение устройства должно быть интенсивным.

Иной подход реализован в интегральном регуляторе, где за нагрузку отвечает интегральный таймер. Как правило, в подобных схемах используются транзисторы практически любых наименований. Это связано с тем, что в составе имеется микросхема, обладающая большими значениями выходного тока.

Если нагрузка меньше 0,1 ампера, то всё напряжение поступает прямо на микросхему в обход транзисторов. Однако для эффективной работы регулятора необходимо, чтобы на затворе было напряжение 12В. Поэтому электроцепь и напряжение самого питания должно соответствовать этому диапазону.

Обзор типичных схем

Регулировать вращения вала электродвигателя малой мощности можно посредством последовательного соединения резистора питания с отсутствие. Однако у такого варианта имеется очень низкий КПД и отсутствие возможности плавного изменения скорости. Чтобы избежать такой неприятности, следует рассмотреть несколько схем регулятора, которые применяются чаще всего.

Как известно, ШИМ имеет постоянную амплитуду импульсов. Кроме того, амплитуда идентична напряжению питания. Следовательно, электродвигатель не остановится, даже работая на малых оборотах.

Второй вариант аналогичен первому. Единственное отличие, что в качестве задающего генератора используется операционный усилитель. Этот компонент имеет частоту 500 Гц и занимается выработкой импульсов, имеющих треугольную форму. Регулировка также осуществляется переменным резистором.

Как сделать своими руками

Если нет желания тратиться на приобретение готового устройства, его можно изготовить самостоятельно. Таким образом, можно не только сэкономить деньги, но и получить полезный опыт. Итак, для изготовления тиристорного регулятора потребуется:

  • паяльник (для проверки работоспособности);
  • провода;
  • тиристор, конденсаторы и резисторы;
  • схема.

Как видно по схеме, регулятором контролируется только 1 полупериод. Однако для тестирования работоспособности на обычном паяльнике этого будет вполне достаточно.

Если знаний по расшифровке схемы недостаточно, можно ознакомиться с текстовым вариантом:

Использование регуляторов позволяет более экономично использовать электродвигатели. В определённых ситуациях такое устройство можно изготовить самостоятельно. Однако для более серьёзных целей (например, контроля оборудования для отопления) лучше приобрести готовую модель. Благо, на рынке есть широкий выбор таких изделий, а цена вполне демократичная.

Производить регулировку скорости вращения вала коллекторного электродвигателя, имеющего малую мощность, можно подсоединяя последовательно в электроцепь его питания . Но данный вариант создает очень низкий КПД, и к тому же отсутствует возможность осуществлять плавное изменение скорости вращения.

Основное, что этот способ временами приводит к полной остановке электродвигателя при низком напряжении питания. Регулятор оборотов электродвигателя постоянного тока, описанные в данной статье, не имеют эти недостатки. Данные схемы можно с успехом применять и для изменения яркости свечения ламп накаливания на 12 вольт.

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

Изменяют скорость вращения переменным резистором R5, который меняет длительность импульсов. Так как, амплитуда ШИМ импульсов постоянна и равна напряжению питания электродвигателя, то он никогда не останавливается даже при очень малой скорости вращения.

Вторая схема

Она схожа с предыдущей, но в роли задающего генератора применен операционный усилитель DA1 (К140УД7).

Этот ОУ функционирует как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Она своеобразная, построена на она на . Задающий генератор действует с частотой 500 Гц. Ширина импульсов, а следовательно, и частоту вращения двигателя возможно изменять от 2 % до 98 %.

Слабым местом во всех вышеприведенных схемах является, то что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя постоянного тока. Разрешить эту проблему можно с помощью следующей схемы:

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых 2 кГц. Вся специфика схемы — присутствие положительной обратной связи (ПОС) сквозь элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не случаются автоколебания частоты вращения при изменении нагрузки.

Детали регуляторов вращения электродвигателей

В данных схемах возможно применить следующие замены радиодеталей: транзистор КТ817Б — КТ815, КТ805; КТ117А возможно поменять КТ117Б-Г или 2N2646; Операционный усилитель К140УД7 на К140УД6, КР544УД1, ТL071, TL081; таймер NE555 — С555, КР1006ВИ1; микросхему TL074 — TL064, TL084, LM324.

При использовании более мощной нагрузки, ключевой транзистор КТ817 возможно поменять мощным полевым транзистором, например, IRF3905 или ему подобный.

Наиболее простой метод регулирования скорости вращения двигателя постоянного тока основан на использовании широтно-импульсной модуляции (ШИМ или PWM). Суть этого метода заключается в том, что напряжение питания подается на двигатель в виде импульсов. При этом частота следования импульсов остается постоянной, а их длительность может меняться.

ШИМ сигнал характеризуется таким параметром как коэффициент заполнения или Duty cycle. Это величина обратная скважности и равна отношению длительности импульса к его периоду.

D = (t/T) * 100%

На рисунках ниже изображены ШИМ сигналы с различными коэффициентами заполнения.


При таком методе управления скорость вращения двигателя будет пропорциональна коэффициенту заполнения ШИМ сигнала.

Простая схема управления двигателем постоянного тока

Простейшая схема управления двигателем постоянного тока состоит из полевого транзистора, на затвор которого подается ШИМ сигнал. Транзистор в данной схеме выполняет роль электронного ключа, коммутирующего один из выводов двигателя на землю. Транзистор открывается на момент длительности импульса.

Как будет вести себя двигатель в таком включении? Если частота ШИМ сигнала будет низкой (единицы Гц), то двигатель будет поворачиваться рывками. Это будет особенно заметно при маленьком коэффициенте заполнения ШИМ сигнала.
При частоте в сотни Гц мотор будет вращаться непрерывно и его скорость вращения будет изменяться пропорционально коэффициенту заполнения. Грубо говоря, двигатель будет "воспринимать" среднее значение подводимой к нему энергии.

Схема для генерации ШИМ сигнала

Существует много схем для генерации ШИМ сигнала. Одна из самых простых - это схема на основе 555-го таймера. Она требует минимум компонентов, не нуждается в настройке и собирается за один час.


Напряжение питания схемы VCC может быть в диапазоне 5 - 16 Вольт. В качестве диодов VD1 - VD3 можно взять практически любые диоды.

Если интересно разобраться, как работает эта схема, нужно обратиться к блок схеме 555-го таймера. Таймер состоит из делителя напряжения, двух компараторов, триггера, ключа с открытым коллектором и выходного буфера.



Вывод питания (VCC) и сброса (Reset) у нас заведены на плюс питания, допустим, +5 В, а земляной (GND) на минус. Открытый коллектор транзистора (вывод DISCH) подтянут к плюсу питания через резистор и с него снимается ШИМ сигнал. Вывод CONT не используется, к нему подключен конденсатор. Выводы компараторов THRES и TRIG объединены и подключены к RC цепочке, состоящей из переменного резистора, двух диодов и конденсатора. Средний вывод переменного резистора подключен к выводу OUT. Крайние выводы резистора подключены через диоды к конденсатору, который вторым выводом подключен к земле. Благодаря такому включению диодов, конденсатор заряжается через одну часть переменного резистора, а разряжается через другую.

В момент включения питания на выводе OUT низкий логический уровень, тогда на выводах THRES и TRIG, благодаря диоду VD2, тоже будет низкий уровень. Верхний компаратор переключит выход в ноль, а нижний в единицу. На выходе триггера установится нулевой уровень (потому что у него инвертор на выходе), транзисторный ключ закроется, а на выводе OUT установиться высокий уровень (потому что у него на инвертор на входе). Далее конденсатор С3 начнет заряжаться через диод VD1. Когда она зарядится до определенного уровня, нижний компаратор переключится в ноль, а затем верхний компаратор переключит выход в единицу. На выходе триггера установится единичный уровень, транзисторный ключ откроется, а на выводе OUT установится низкий уровень. Конденсатор C3 начнет разряжаться через диод VD2, до тех пор, пока полностью не разрядится и компараторы не переключат триггер в другое состояние. Далее цикл будет повторяться.

Приблизительную частоту ШИМ сигнала, формируемого этой схемой, можно рассчитать по следующей формуле:


F = 1.44/(R1*C1), [Гц]

где R1 в омах, C1 в фарадах.

При номиналах указанных на схеме выше, частота ШИМ сигнала будет равна:


F = 1.44/(50000*0.0000001) = 288 Гц.

ШИМ регулятор оборотов двигателя постоянного тока

Объединим две представленные выше схемы, и мы получим простую схему регулятора оборотов двигателя постоянного тока, которую можно применить для управления оборотами двигателя игрушки, робота, микродрели и т.д.



VT1 - полевой транзистор n-типа, способный выдерживать максимальный ток двигателя при заданном напряжении и нагрузке на валу. VCC1 от 5 до 16 В, VCC2 больше или равно VCC1.

Вместо полевого транзистора можно использовать биполярный n-p-n транзистор, транзистор дарлингтона, оптореле соответствующей мощности.

Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.

Зачем нужен регулятор оборотов

Регулятор оборотов двигателя, частотный преобразователь – это прибор на мощном транзисторе, который необходим для того, чтобы инвертировать напряжение, а также обеспечить плавную остановку и пуск асинхронного двигателя при помощи ШИМ. ШИМ – широко-импульсное управление электрическими приспособлениями. Его применяют для создания определенной синусоиды переменного и постоянного тока.

Фото – мощный регулятор для асинхронного двигателя

Самый простой пример преобразователя – это обычный стабилизатор напряжения. Но у обсуждаемого прибора гораздо больший спектр работы и мощность.

Частотные преобразователи используются в любом устройстве, которое питается от электрической энергии. Регуляторы обеспечивают чрезвычайно точный электрический моторный контроль, так что скорость двигателя можно изменять в меньшую или большую сторону, поддерживать обороты на нужном уровне и защищать приборы от резких оборотов. При этом электродвигателем используется только энергия, необходимая для работы, вместо того, чтобы запускать его на полной мощности.


Фото – регулятор оборотов двигателя постоянного тока

Зачем нужен регулятор оборотов асинхронного электродвигателя:

  1. Для экономии электроэнергии. Контролируя скорость мотора, плавность его пуска и остановки, силы и частоты оборотов, можно добиться значительной экономии личных средств. В качестве примера, снижение скорости на 20% может дать экономию энергии в размере 50%.
  2. Преобразователь частоты может использоваться для контроля температуры процесса, давления или без использования отдельного контроллера;
  3. Не требуется дополнительного контроллера для плавного пуска;
  4. Значительно снижаются расходы на техническое обслуживание.

Устройство часто используется для сварочного аппарата (в основном для полуавтоматов), электрической печки, ряда бытовых приборов (пылесоса, швейной машинки, радио, стиральной машины), домашнего отопителя, различных судомоделей и т.д.


Фото – шим контроллер оборотов

Принцип работы регулятора оборотов

Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:

  1. Двигателя переменного тока;
  2. Главного контроллера привода;
  3. Привода и дополнительных деталей.

Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.


Фото – схема регулятора для коллекторного двигателя

В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.


Фото – синусоида нормальной работы электродвигателя

Как выбрать регулятор

Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:

  1. Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
  2. Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
  3. Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
  4. Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
  5. По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).

При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.


Фото – схема регулятора для бесколлекторных двигателей

В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.

Видео: регулятор оборотов электродвигателя с ШИро V2

Как сделать самодельный регулятор оборотов двигателя

Можно сделать простой симисторный регулятор оборотов электродвигателя, его схема представлена ниже, а цена состоит только из деталей, продающихся в любом магазине электротехники.

Для работы нам понадобится мощный симистор типа BT138-600, её советует журнал радиотехники.


Фото – схема регулятора оборотов своими руками

В описанной схеме, обороты будут регулироваться при помощи потенциометра P1. Параметром P1 определяется фаза входящего импульсного сигнала, который в свою очередь открывает симистор. Такая схема может применяться как в полевом хозяйстве, так и в домашнем. Можно использовать данный регулятор для швейных машинок, вентиляторов, настольных сверлильных станков.

Принцип работы прост: в момент, когда двигатель немного затормаживается, его индуктивность падает, и это увеличивает напряжение в R2-P1 и C3, то в свою очередь влечет более продолжительное открытие симистора.

Тиристорный регулятор с обратной связью работает немного по-другому. Он обеспечивает обратный ход энергии в энергетическую систему, что является очень экономным и выгодным. Данный электронный прибор подразумевает включение в электрическую схемы мощного тиристора. Его схема выглядит вот так:


Здесь для подачи постоянного тока и выпрямления требуется генератор управляющего сигнала, усилитель, тиристор, цепь стабилизации оборотов.

Загрузка...
Top